論文 Process optimization on kesterite-based ceramics for enhancing their thermoelectric performances assisted by active machine learning approach: A tool for metal-sulfide ceramics development

Cédric Bourgès ORCID (National Institute for Materials ScienceROR) ; Guillaume Lambard SAMURAI ORCID (National Institute for Materials ScienceROR) ; Naoki Sato SAMURAI ORCID (National Institute for Materials ScienceROR) ; Makoto Tachibana SAMURAI ORCID (National Institute for Materials ScienceROR) ; Satoshi Ishii SAMURAI ORCID (National Institute for Materials ScienceROR) ; Takao Mori SAMURAI ORCID (National Institute for Materials ScienceROR)

コレクション

引用
Cédric Bourgès, Guillaume Lambard, Naoki Sato, Makoto Tachibana, Satoshi Ishii, Takao Mori. Process optimization on kesterite-based ceramics for enhancing their thermoelectric performances assisted by active machine learning approach: A tool for metal-sulfide ceramics development. Acta Materialia. 2024, 281 (), 120342.
SAMURAI

説明:

(abstract)

The thermal process parameters are crucial in metal-sulfides ceramics as they affect significantly the resulting physico-chemical properties. In the present work, we investigated the sintering effect in the kesterite Cu2.125Zn0.875SnS4 on its structural, microstructural, and thermoelectric (TE) properties to highlight the non-negligible contribution of the thermal process often ignored in metal-sulfide ceramics. For this purpose, we developed an approach combining data science with the conventional material experiment/theory approach which can be used as a tool to shortcut the time-consuming steps of TE material optimization. We confirmed that the optimization and control of the densification process is critical in unravelling the highest potential on metal sulfide TE ceramics with a non-negligible increase of its zT up to 60%. We propose a scientific tool, the synergic combination of active machine learning with conventional chemistry/theory approaches, to either identify the most proficient sintering process as well as the process to avoid the degradation of the metal-sulfide ceramic properties and thus in a shorten number of experiments. This approach can be extended not only to other metal-sulfide ceramics for thermoelectricity but also to other research fields.

権利情報:

キーワード: Kesterite, Machine learning, Process, Thermoelectric, Ceramic

刊行年月日: 2024-08-29

出版者: Elsevier BV

掲載誌:

  • Acta Materialia (ISSN: 13596454) vol. 281 120342

研究助成金:

  • JST-Mirai Program
  • Japan Society for the Promotion of Science

原稿種別: 出版者版 (Version of record)

MDR DOI:

公開URL: https://doi.org/10.1016/j.actamat.2024.120342

関連資料:

その他の識別子:

連絡先:

更新時刻: 2024-09-20 16:30:30 +0900

MDRでの公開時刻: 2024-09-20 16:30:30 +0900

ファイル名 サイズ
ファイル名 Revised-SI-ActaMater 1_GLambard_20240801.docx
application/vnd.openxmlformats-officedocument.wordprocessingml.document
サイズ 6.47MB 詳細
ファイル名 1-s2.0-S135964542400692X-main.pdf (サムネイル)
application/pdf
サイズ 4.87MB 詳細