Unsupervised machine learning combined with 4D scanning transmission electron microscopy for bimodal nanostructural analysis

MDR Open Deposited

Unsupervised machine learning techniques have been combined with scanning transmission electron microscopy (STEM) to enable comprehensive crystal structure analysis with nanometer spatial resolution. In this study, we investigated large-scale data obtained by four-dimensional (4D) STEM using dimensionality reduction techniques such as non-negative matrix factorization (NMF) and hierarchical clustering with various optimization methods. We developed software scripts incorporating knowledge of electron diffraction and STEM imaging for data preprocessing, NMF, and hierarchical clustering. Hierarchical clustering was performed using cross-correlation instead of conventional Euclidean distances, resulting in rotation-corrected diffractions and shift-corrected maps of major components. An experimental analysis was conducted on a high-pressure-annealed metallic glass, Zr-Cu-Al, revealing an amorphous matrix and crystalline precipitates with an average diameter of approximately 7 nm, which were challenging to detect using conventional STEM techniques. Combining 4D-STEM and optimized unsupervised machine learning enables comprehensive bimodal (i.e., spatial and reciprocal) analyses of material nanostructures.

First published at
Resource type
Date published
  • 05/02/2024
Rights statement
License description
  • This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit
Manuscript type
  • Version of record (Published version)
Funding reference