Aiwei Zhao
(高分子・バイオ材料研究センター/高分子材料分野/電子機能高分子グループ, National Institute for Materials Science / Graduate School of Information Science and Technology)
;
Dines Chandra Santra
(高分子・バイオ材料研究センター/高分子材料分野/電子機能高分子グループ, National Institute for Materials Science)
;
Kenji Nagata
(マテリアル基盤研究センター/材料設計分野/データ駆動型材料設計グループ, National Institute for Materials Science
)
;
Junya Sakurai
(技術開発・共用部門/材料データプラットフォーム/データ活用ユニット, National Institute for Materials Science)
;
Masahiko Demura
(外部連携部門/構造材料DXマテリアルズオープンプラットフォーム, National Institute for Materials Science
)
;
Masayoshi Higuchi
(高分子・バイオ材料研究センター/高分子材料分野/電子機能高分子グループ, National Institute for Materials Science / Graduate School of Information Science and Technology)
説明:
(abstract)Materials informatics has recently garnered significant attention as a potent tool for the development of a wide array of functional materials. The successful integration of materials informatics into polymer design holds the promise of streamlining the synthesis of polymers with tailored properties, thereby enhancing efficiency and specificity in material engineering. Machine learning is a subset of artificial intelligence (AI), which involves algorithms learning from data to make predictions or decisions. The machine learning, especially Bayesian optimization method is widely used in materials science.
In this paper, we report our recent approach on the search of electrochromic (EC) metallo-supramolecular polymers (MSPs) with the help of materials informatics. Four components were selected among many components of MSPs. Among all the combination of the variations, the selected number of the corresponding MSPs according to an orthogonal table were synthesized. A coloration efficiency (CE) of 1281 cm2/C was obtained compared to our previous work. We found that this method with statistics was useful to find the polymers with better EC properties quickly.
権利情報:
キーワード: electrochromic, coloration efficiency, data-science
刊行年月日: [2024年]
出版者: International Display Workshops General Incorporated Association
掲載誌:
会議: IDW'24 (2024-12-04 - 2024-12-06)
研究助成金:
原稿種別: 出版者版 (Version of record)
MDR DOI:
公開URL: https://pub.confit.atlas.jp/en/event/idw2024
関連資料:
その他の識別子:
連絡先:
更新時刻: 2024-12-25 17:06:21 +0900
MDRでの公開時刻: 2025-06-01 08:24:32 +0900
ファイル名 | サイズ | |||
---|---|---|---|---|
ファイル名 |
IDW24_EP5-02_Synthesis of Electrochromic Supramolecular Polymers Driven by Data Science.pdf
(サムネイル)
application/pdf |
サイズ | 855KB | 詳細 |