論文 Estimating the S-N Curve by Machine Learning Random Forest Method

Nobuo Nagashima SAMURAI ORCID (National Institute for Materials Science) ; Masao Hayakawa SAMURAI ORCID (National Institute for Materials Science) ; Hiroyuki Masuda SAMURAI ORCID (National Institute for Materials Science) ; Kotobu Nagai (National Institute for Materials Science)

コレクション

引用
Nobuo Nagashima, Masao Hayakawa, Hiroyuki Masuda, Kotobu Nagai. Estimating the S-N Curve by Machine Learning Random Forest Method. MATERIALS TRANSACTIONS. 2024, 65 (4), MT-Z2023006.
SAMURAI

説明:

(abstract)

Fatigue limit is well predicted by tensile strength or hardness, and the relationship is often analyzed by linear regression using the minimum squared approximation. However, the prediction of the number cycles to failure at a given stress amplitude, meaning the estimate of the S–N curve, has not been realized. Therefore, we aim to investigate the estimability of the S–N curve using the random forest method based on the data described in the NIMS fatigue data sheet. The random forest method is a machine learning algorithm and an ensemble learning algorithm that integrates weak learners of multiple decision tree models to improve generalization ability. It was clarified that the machine learning of the multiple decision tree model is excellent in fatigue limit prediction. The S–N curve can be accurately estimated by combining the prediction of fatigue limit and the number of cycles to failure at a given stress amplitude.

権利情報:

キーワード: fatigue, high-cycle fatigue, data-sheet, machine learning, random forest method

刊行年月日: 2024-04-01

出版者: Japan Institute of Metals

掲載誌:

  • MATERIALS TRANSACTIONS (ISSN: 13475320) vol. 65 issue. 4 p. 428-433 MT-Z2023006

研究助成金:

  • 日本学術振興会 20K04170 (大地震を模擬した高速ひずみ速度の極低サイクル繰り返し変形による疲労損傷の解析)

原稿種別: 出版者版 (Version of record)

MDR DOI:

公開URL: https://doi.org/10.2320/matertrans.MT-Z2023006

関連資料:

その他の識別子:

連絡先:

更新時刻: 2024-12-27 16:30:58 +0900

MDRでの公開時刻: 2024-12-27 16:30:58 +0900

ファイル名 サイズ
ファイル名 Estimation the S-N Curve by Machine Learning Random Forest Method_Mater. Trans. 65(2024)428-433.pdf (サムネイル)
application/pdf
サイズ 2.68MB 詳細