Shunya Minami
;
Yoshihiro Hayashi
;
Stephen Wu
;
Kenji Fukumizu
;
Hiroki Sugisawa
;
Masashi Ishii
;
Isao Kuwajima
;
Kazuya Shiratori
;
Ryo Yoshida
説明:
(abstract)In this study, we demonstrate that the scaling law of simulation-to-real (Sim2Real) transfer learning holds for several machine learning tasks in materials science. Through three different prediction tasks for polymers and inorganic material systems, it was observed that the prediction error on real systems decreased monotonically with increasing the size of computational data according to a power law. Observing the scaling behavior offers various insights for advancing database development, such as determining the sample size necessary to achieve a desired predictive performance and a quantitative measure of the database’s potential value in real-world applications. Additionally, it aids in identifying equivalent sample sizes for physical and computational experiments and guiding the design of data production protocols principled the Sim2Realtransferability and scalability to downstream real-world tasks.
権利情報:
キーワード: molecular dynamics simulation, scaling law of simulation- to-real, Sim2Real, transfer learning, PoLyInfo
刊行年月日: 2025-05-24
出版者: Springer Science and Business Media LLC
掲載誌:
研究助成金:
原稿種別: 出版者版 (Version of record)
MDR DOI:
公開URL: https://doi.org/10.1038/s41524-025-01606-5
関連資料:
その他の識別子:
連絡先:
更新時刻: 2025-06-13 13:51:24 +0900
MDRでの公開時刻: 2025-06-13 16:20:59 +0900
ファイル名 | サイズ | |||
---|---|---|---|---|
ファイル名 |
s41524-025-01606-5.pdf
(サムネイル)
application/pdf |
サイズ | 4.15MB | 詳細 |