論文 Monte Carlo tree search for materials design and discovery

Ju, Shenghong ; Tsuda, Koji SAMURAI ORCID ; Shiomi, Junichiro ; Dieb, Thaer M. SAMURAI ORCID

コレクション

引用
Ju, Shenghong, Tsuda, Koji, Shiomi, Junichiro, Dieb, Thaer M.. Monte Carlo tree search for materials design and discovery.
SAMURAI

説明:

(abstract)

Materials design and discovery can be represented as selecting the optimal structure from a space of candidates that optimizes a target property. Since the number of candidates can be exponentially proportional to the structure determination variables, the optimal structure must be obtained efficiently. Recently, inspired by its success in the Go computer game, several approaches have applied Monte Carlo tree search (MCTS) to solve optimization problems in natural sciences including materials science. In this paper, we briefly reviewed applications of MCTS in materials design and

権利情報:

キーワード: Materials design and discovery

刊行年月日: 2019-06-20

出版者: Cambridge University Press

掲載誌:

研究助成金:

原稿種別: 査読前原稿 (Author's original)

MDR DOI:

公開URL: https://doi.org/10.1557/mrc.2019.40

関連資料:

その他の識別子:

連絡先:

更新時刻: 2024-01-05 22:11:17 +0900

MDRでの公開時刻: 2021-08-14 03:55:56 +0900

ファイル名 サイズ
ファイル名 monte_carlo_tree_search_for_materials_design_and_discovery.pdf (サムネイル)
application/pdf
サイズ 1.21MB 詳細