Supplemental Materials

Exploring the magnetic phase diagram and Hall resistivity suppression in centrosymmetric GdOs₂Si₂ single crystal

Hiroaki Hayashi,^{1,2,*} Moyu Kato,³ Taichi Terashima,¹ Naoki Kikugawa,⁴ Hiroya Sakurai,¹ Hiroyuki K. Yoshida,³ Kazunari Yamaura^{1,2}

- ¹ Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
 - Graduate School of Chemical Sciences and Engineering, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Department of Physics, Hokkaido University, North 10 West 8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- ⁴ Research Center for Energy and Environmental Materials, National Institute for Materials Science, 3-13 Sakura, Tsukuba, Ibaraki 305-0003, Japan

*E-mail: hhayashi@issp.u-tokyo.ac.jp

Magnetic susceptibility over a wide temperature range:

Additional data for magnetic susceptibility over a wide temperature range is presented in Fig. S1, depicting the γ -T curves for $\mu_0 H = 1$ T with H/[100], [110], and [001]. Each curve displays Curie-Weiss behavior at higher temperatures, and a distinctive peak at $T_1 = 26.6$ K signifies the antiferromagnetic ordering of the Gd³⁺ moments. The Curie constant (C) and Weiss temperature ($\Theta_{\rm w}$) were determined by analyzing the linear temperature dependence of the inverse magnetic susceptibility above 100 K. For H/[100] and H/[110], C was calculated to be 8.39(1) emu K mol⁻¹ with $\Theta_{\rm w}$ of +24.9(1) K, while for H/[001], C was found to be 8.20(1) emu K mol⁻¹ with $\Theta_{\rm w}$ of +25.4(5) K. The calculated effective magnetic moment derived from the Curie constant was $8.19(1) \mu_B$ for H//[100] and [110], and $8.01(1) \mu_B$ for H//[001]. These values slightly exceed the theoretical value of $\mu_{\rm eff} = 7.94 \,\mu_{\rm B}$ for Gd³⁺ ions, suggesting a well-localized nature of the 4f electrons of Gd^{3+} ions, with the itinerant 5d electrons of Os ions contributing to the spin moment [43]. Despite the antiferromagnetic ordering, analogous to GdRu₂Si₂ [26,27], the dominant interaction between Gd³⁺ moments is considered to be ferromagnetic due to the positive Weiss temperature. Moreover, while the paramagnetic state is nearly isotropic, the magnetic susceptibility below T_1 is highly anisotropic, notably with the susceptibility for H/[001] significantly lower than that for H/[100] or [110]. This observation suggests that the Gd³⁺ moments are ordered along the c-axis, in line with the magnetic structure of GdRu₂Si₂ [24].

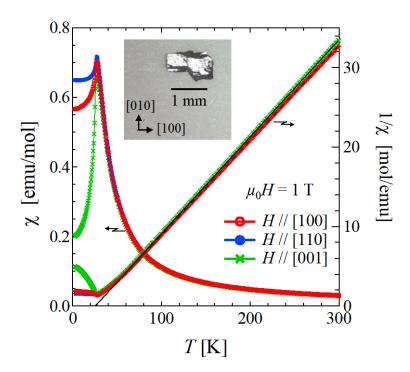


Fig. S1: Temperature dependence of magnetic susceptibility under a magnetic field of 1 T along [100], [110], and [001]. The solid black line represents the Curie-Weiss fitting. The inset shows the crystal structure of GdOs₂Si₂ [35]. The inset is a photograph of the centrosymmetric GdOs₂Si₂ single crystal. All measurements were carried out using the single crystal shown in this photograph.

Supplemental Hall conductivity data:

Additional data for Hall conductivity are determined using the equation $\sigma_{yx} = -\rho_{yx} / (\rho_{xx}^2 + \rho_{yx}^2)$ as presented in Fig. S2. The σ_{yx} increases linearly up to H_1 , whereas the hump-like enhancement is identified in phase II. This enhancement is completely suppressed in phase II', leading to broad peak in phase III.

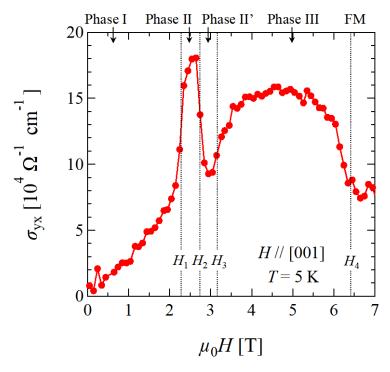


Fig. S2: Magnetic field dependence of σ_{yx} at 5 K for H//[001]. The gray and yellow regions correspond to the phases II and II', respectively.

Supplemental Hall resistivity analysis:

We fitted the magnetic field dependence of Hall resistivity data (ρ_{yx}) along with magnetization (M) and longitudinal resistivity (ρ_{xx}) curves, as shown in Fig. S3. The calculated anomalous Hall component, ρ_{yx}^{A} , assuming intrinsic $(\propto M\rho_{xx}^{2})$ and extrinsic $(\propto M\rho_{xx})$ mechanisms, is plotted in the bottom panel of Fig. S3. As mentioned in the main text, adequate fitting could not be achieved; this analysis considers scattering of conduction electrons by relatively larger single skyrmions, whereas a short-period skyrmion lattice with smaller diameters is predicted in $GdOs_2Si_2$. The band folding resulting from the periodicity of the skyrmion lattice may contribute to increased resistivity. Therefore, a more appropriate approach is needed for analyzing the topological Hall effect.

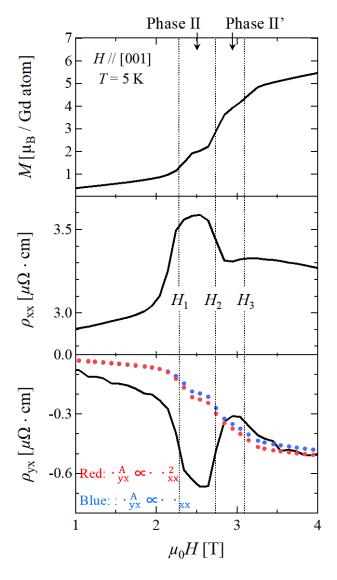


Fig. S3: Magnetic field dependence of magnetization (M), longitudinal resistivity (ρ_{xx}), and Hall resistivity (ρ_{yx}). The red and blue dots represent the anomalous Hall term calculated assuming intrinsic ($\rho_{yx}^A \propto M \rho_{xx}^2$) and extrinsic ($\rho_{yx}^A \propto M \rho_{xx}$) mechanisms, respectively.

Supplemental electrical resistivity data:

Additional data for electrical resistivity are presented in Fig. S3. The ρ_{xx} vs T curves exhibit anomalies at characteristic temperatures of T_1 , T_2 , and T_3 , which correspond to the temperatures determined in the magnetization measurements. At $\mu_0 H = 0$ and 1 T, ρ_{xx} decreases as the temperature is lowered below T_1 . However, at $\mu_0 H \ge 2$ T, a significant change in the temperature dependence of ρ_{xx} is observed. Specifically, at $\mu_0 H = 2$ T, ρ_{xx} experiences an abrupt increase near T_2 during cooling, followed by a subsequent decrease with further cooling. For $\mu_0 H \ge 2.4$ T, ρ_{xx} shows a weak kink at T_1 and a subsequent slight increase, followed by a further increase below T_2 . Interestingly, as shown in the inset of Fig. S3, a negative magnetoresistance is observed not only below T_1 but also at high temperatures, specifically below 40 K. This finding suggests the presence of the magnetic precursor effect, a phenomenon observed in isostructural Gd-based compounds [40,41].

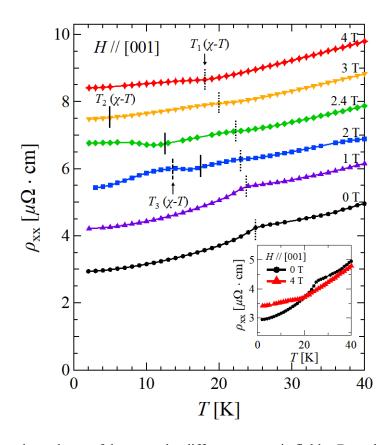


Fig. S4: Temperature dependence of the ρ_{xx} under different magnetic fields. Dotted, solid, and dashed lines denote the characteristic temperatures T_1 , T_2 and T_3 , respectively, determined from χ -T measurements. The data have been shifted for clarity. The inset presents ρ_{xx} -T curves at $\mu_0H=0$ T (black) and 4 T (red) without any offset.

Supplemental C_p data:

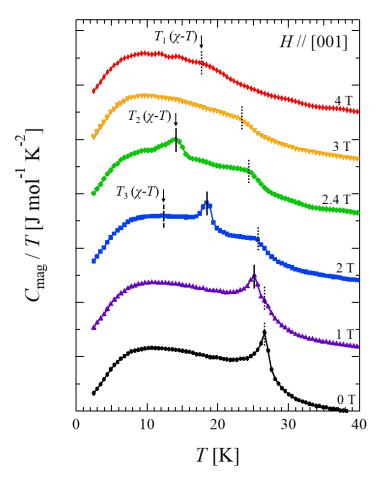


Fig. S5: Temperature dependence of C_p below 40 K under various magnetic fields. The magnetic transition temperatures at T_1 , T_2 , and T_3 determined from χ -T measurements are indicated by dotted, solid, and dashed lines, respectively. The data have been shifted for clarity.

Phase diagram obtained from an alternate crystal:

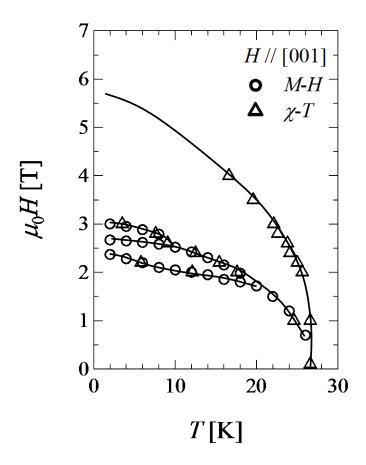


Fig. S6: Phase diagram obtained from an alternate crystal of $GdOs_2Si_2$ for H//[001]. Circles and triangles represent the characteristic points observed in M-H and χ -T measurements, respectively.