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ABSTRACT 

The main bottleneck for heat-assisted magnetic recording (HAMR) to achieve a 

potential areal density of 4 Tb/in2 is the difficulty in obtaining FePt-X nanogranular media 

with an ideal stacking structure of perfectly isolated L10-FePt columnar nanograins. Here, 

we present a fully automated routine that combines a convolutional neural network and 

machine vision to enable data mining from transmission electron microscopy images of FePt-

C nanogranular media. This allowed us to generate a dataset and implement a machine 

learning optimization model that guides process parameters to achieve the desired 

nanostructure, i.e., small grain size with unimodal distribution and a large coercivity, which 

was successfully validated experimentally. This work demonstrates the promise of data-

driven design of high-density HAMR media. 
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1. Introduction 

The ever-increasing amount of globally created data has driven the growth in storage capacity 

of inexpensive and reliable hard disk drives (HDDs) [1]. Heat-assisted magnetic recording 

(HAMR) is the technology that has made it possible to increase in the HDD areal density of 

data storage beyond 1 Tb/in2. HAMR has the potential to reach at least 4 Tb/in2 if the 

nanostructure of the recording media is optimized [2–4]. Current HAMR technology uses 

granular films based on the tetragonal L10-ordered FePt phase, which is known to have a 

high magnetic anisotropy constant KU ∼ 4.5 × 106 J/m3 and a fine grain size of 7-9 nm [5–7]. 

To reach the target of 4 Tb/in2, the grain size must be reduced to 4-5 nm with a standard 

deviation (SD) below 15% [3,8]. In addition, other microstructural features affect the 

magnetic recording performance of FePt-X media, i.e., the thickness of segregant X isolating 

FePt grains, grain morphology, degree of L10 order, and misoriented grains and twins [9–11]. 

The realization of the desired nanostructure requires the optimization of a wide range of 

process parameters, such as sputtering rates, substrate temperature, selected underlayers, 

segregant type, its volume fraction etc. [12,13]. To optimize the nanostructure of HAMR 

media, it is essential to consider the correlations between process parameters and the resulting 

nanostructures and their magnetic properties. The nanostructure optimization problem of 

HAMR media can be addressed by machine learning (ML) of process parameters, 

nanostructures and magnetic properties. The benefits of ML-assisted material development 

have already been demonstrated for other thin-film systems such as Ti-Ni and SrRuO3 

[14,15]. However, the data-driven optimization of HAMR media is hindered by a data 

acquisition because processing transmission electron microscopy (TEM) images, which are 
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the primary source of nanostructure data, is laborious and time-consuming. Such a bottleneck 

can be overcome by using state-of-the-art deep learning models that can perform filtering, 

image segmentation, and contour detection in a fast and automated manner [16,17]. 

Deep learning models, including convolutional neural networks (CNN), have been widely 

used in medical imaging, materials science, and other fields [18–20]. Introduced in 2015, U-

Net has become one of the most important CNN architectures for semantic image 

segmentation [21]. Recent advances in the organization of skip connections have led to 

modifications, such as U-Net++ [22] and U-Net 3+ [23], which could help to improve object 

recognition at different scales while being less sensitive to noise. A comparison of semantic 

segmentation models made for transmission electron microscopy (TEM) images of Pt 

nanoparticles showed that U-Net 3+ could be considered the current state-of-the-art [24]. 

Although many advanced deep learning models have been proposed for fast and efficient 

instance segmentation such as YOLO and Mask R-CNN have been proposed [25,26], they 

are generally more demanding in terms of dataset size and computational resources required 

for training. Stardist is a compromise case among instance segmentation models which 

achieves a high performance and low training requirements by assuming a star-like shape of 

instances [27]. This model is often used for segmentation of microscopy images with objects 

of relatively simple shapes such as bacteria, cells, nuclei or small particles. 

In this study we realized an automatic analysis of bright-field (BF)-TEM (further TEM 

for simplicity) images of nanogranular media based on U-Net 3+, Stardist, and Mask R-CNN 

models and compared their performance. The selected models provide a state-of-the-art 
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performance for retrieving accurate microstructural data (U-Net 3+) with the potential to 

overcome some problems such as interconnected grains (Stardist and Mask R-CNN). The 

developed TEM image segmentation routine was used to enable the data-driven optimization 

of FePt granular media. We selected the FePt-C system for the proof-of-concept study 

because it is under intensive development for higher areal density HAMR media through 

nanostructure optimization. Our data-driven optimization workflow consists of several steps. 

First, automatic segmentation was performed on a series of plane-view TEM images of FePt-

C nanogranular films deposited under different sputtering conditions. Second, computer 

vision algorithms were used to extract microstructural features from the segmented images, 

i.e., grain size distribution, pitch distance, and grain roundness. The extracted microstructural 

data was enriched with process parameters and magnetic properties to form an extended 

dataset. Finally, machine learning regressors were trained and combined with a differential 

evolution algorithm to predict optimal conditions leading to a small grain size and large 

coercivity. The predicted conditions were experimentally verified by preparing and 

evaluating corresponding FePt-C media samples. The proposed workflow can significantly 

advance the development of high-density HAMR media and promote data-driven strategies 

for materials research. 

 

2. Experiment and methods 

FePt-C films were deposited on MgO(001) single crystal substrates by magnetron sputtering 

of Fe50Pt50 and C targets under 0.48 Pa Ar. The MgO substrate was cleaned with acetone, 
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rinsed with ethanol in an ultrasonic bath, and annealed at 650 °C in an ultra-high vacuum 

chamber with a pressure of better than ~6×10-6 Pa. Each film was deposited in several stages 

with individual temperatures and sputtering rates (resulting in different C contents). Finally, 

the as-deposited FePt-C films were covered with a 3 nm C capping layer. 

The magnetic properties of the films were measured at room temperature using a 

superconducting quantum interference device equipped with a vibrating sample 

magnetometer (SQUID-VSM, Quantum Design) with an applied magnetic field of up to ± 7 

T. Microstructural observations were made using a Titan G2 80-200 scanning transmission 

electron microscope (FEI) with a probe aberration correction system. 

For binary segmentation of BF-TEM images with grains and segregant matrix as two classes, 

we selected U-Net 3+, Stardist, and Mask R-CNN models. All models were trained using the 

same 24 representative 300 × 300 nm2
 manually segmented BF-TEM images of FePt-C media 

containing approximately 600 - 1000 grains each. Since each model requires a unique format 

of training data, three datasets were prepared and formatted accordingly. For the Stardist and 

U-Net 3+ models, large images and corresponding segmented masks were cut into patches 

of 256 × 256 pixel2. The image augmentation step included random intensity shifting and 

patch flipping, resulting in a final training set of approximately 5900 patches. For Mask R-

CNN model, a training set was prepared in the common objects in context (COCO) format. 

The general workflow, with examples of training and predicted patches, as well as the CNN 

architecture, is shown in Fig. 1 for the U-Net 3+ model as an illustrative case. Since the final 

high-resolution segmented image in Fig. 1 is composed out of several predicted patches, 
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stitching with smooth blending was used to avoid artifacts at the edges [28]. The layers of U-

Net 3+ were composed using the Keras and TensorFlow Python libraries. A detailed 

description of each layer and its processing steps are available elsewhere [21,23]. A 

combined metric consisting of focal Tversky loss [29], intersection-over-union (IoU) [30], 

and a custom loss function for the improved detection of topological features was used. 

Stardist and Mask R-CNN were taken from the official repositories and used with 

recommended loss functions and backbone architectures [31,32]. A single NVIDIA A100 

with 80 Gb GPU memory was used for training. 

 

 

Figure 1 Left to right: sample images used to train the CNN model, the schematic representation of the U-Net 3+ 
architecture used for semantic segmentation with two classes (grains and a segregant matrix), patched bright field (BF)-
TEM image along with the predicted segmentation. 

 

To analyze the dataset and develop an optimization model for FePt-C media, we used 

regressors based on support vector machines (Scikit-learn library), fully connected neural 

networks (TensorFlow library), and gradient boosting (Catboost library). Gradient boosting 
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regressors (GBRs) were chosen for their best performance and robustness against overfitting. 

For the optimization task, we used the differential evolution algorithm [33] implemented in 

the SciPy library. 

 

3. Results and discussion 

3.1 BF-TEM image processing 

Trained segmentation models were tested on six previously unseen BF-TEM images with 

manually segmented masks as ground truth (GT). All the models showed good performance 

on images with low noise level and well-isolated grains with a unimodal size distribution. 

However, performance begins to differ when a TEM image has significant contrast variation, 

interconnected or overlapping grains, and grain size bimodality. An example with such 

problems is shown in Fig. 2(a). Both the Unet 3+ and Stardist models still perform well 

giving similar mean grain diameters D for the main peak in the grain size distributions that 

match those evaluated from GT (see (a-c) and (e-g) in Fig. 2). It is worth noting that higher 

IoU for Unet 3+ indicates a more accurate reproduction of grain shapes, especially for large 

grains with complicated contours. Both Stardist and Unet 3+ detects many small grains which 

are often neglected in tedious manual segmentation. Small grains missing in the manual 

segmentation artificially reduce the IoU for Stardist and Unet 3+ (minor peak in Fig. 2(e) vs. 

one in (f,g)). On the other hand, some small grains may originate from misinterpreted image 

noise in low-contrast regions, or they can be irrelevant for statistical analysis of the media 

(e.g., FePt grains with D < 3 nm do not maintain L10 ordering and are thermally unstable 
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[34]). These grains can be ignored by introducing a grain size threshold. At the same time, 

information on small grains could be useful for evaluating magnetic recording performance, 

local switching, and signal-to-noise ratio. 

For the given training data, Mask R-CNN shows the lowest performance missing some of 

the grains (Fig. 2(d)), despite the necessary adjustments of the maximum number of instances 

and the detection probability threshold. It also fails to detect relatively small grains, i.e., those 

with 𝐷 < 5 nm (Fig. 2(h)), which could be due to the insufficient number of pixels assigned 

to each grain. 

 

 

Figure 2 Original BF-TEM image (a) along with segmented images obtained with U-Net 3+ (b), Stardist (c), and Mask R-CNN 
(d) models. All images are cropped from and area of 300 × 300 nm2, which was used to extract a statistical information. 
Color variation from dark blue to yellow corresponds to grain size variation from smallest to largest. Legend for original 
image (a) shows diameter D and number of grains for ground truth (GT) manual segmentation. The legends for each 
segmented image show the estimated diameter value, the intersection over union (IoU) value calculated by comparing 
with a ground truth manually segmented image, and the total number of grains detected. Grain diameter distributions 
obtained for manually segmented images (e), with U-Net 3+ (f), Stardist (g), and Mask R-CNN (h) are shown in the lower 
panel. 
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The above comparison shows that both the U-Net 3+ and Stardist models are suitable for 

segmenting typical TEM images of FePt media and have comparable performance. To choose 

one of the models, their advantages and limitations should be considered in more detail – Fig. 

3 serves to illustrate the difference. Double-layered grains, visible as overlapping instances 

of different contrast (Fig. 3(a)), and coalesced grains, visible as chains of instances having 

similar brightness and contrast (Fig. 3(b)), pose a challenge to plain view TEM image 

analysis. Low-noise TEM images with double-layer grains (Fig. 3(c)) can be better processed 

by instance segmentation models such as Stardist rather than by semantic segmentation 

models such as U-Net 3+ (Fig. 3, (e) vs. (d) respectively). In addition, excessive contrast 

details at high-resolution may be misleading for U-Net 3+. When TEM images are less 

resolved and have a higher level of noise, as one shown in Fig. 3(f), U-Net 3+ starts to 

outperform Stardist (Fig. 3, (g) vs. (h)), giving a segmentation closer to the actual contrast 

(higher IoU). Finally, the worst case of a TEM image with coalesced grains forming a maze 

microstructure (Fig. 3(i)) cannot be processed well by Stardist (Fig. 3(k)), since some grain 

deviate too much from the round shapes in the training set or even from the star-like shapes 

assumed by the model. Since U-Net 3+ does not rely on grain shape, it can easily perform 

segmentation (Fig. 3(j)). To deal with seemingly connected grains, we complemented the U-

Net 3+ model with a watershed algorithm to separate weakly connected instances in a post-

processing step. 
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In this work, our goal was to collect a dataset for FePt-C media that summarizes years of 

research using BF-TEM images of varying quality, including challenging examples such as 

those in Fig. 3. Therefore, we chose the U-Net 3+ model as the most universal and robust 

option. At the same time, the workflow based on Stardist could be a better choice for HAMR 

media obtained under a relatively narrow range of sputtering conditions leading to rounded 

grain shapes, especially if segmentation of interconnected grains is of a high priority. 

 

 

Figure 3 Schematic illustrations showing a top view and a side view for a typical case of (a) overlapping grains and (b) 
coalesced grains. Top-view BF-TEM images of FePt-C media with overlapping grains and coalesced grains are shown in 
images (c, f) and (f, i), respectively. Segmentation results obtained for each BF-TEM image by U-Net 3+ (d, g, j) and 
Stardist (e, h, k) models are shown on the right-hand side. 
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3.2 Building and analyzing a dataset 

The U-Net 3+ segmentation model was used to extract microstructural data from BF-TEM 

images obtained for 70 FePt-C thin-film samples in a fast, uniform, and unbiased manner. A 

post-processing of the segmented images was performed using OpenCV and Scikit-image 

libraries. The contour of each grain was detected, then the corresponding area A was 

calculated and used to estimate an effective diameter by 𝐷 = 2√𝐴/𝜋 as well as a roundness 

defined as 𝑅 = 𝐴 𝐴𝑐⁄ , where Ac is an area of the smallest circle enclosing the contour. Grain 

centers were evaluated based on the extrema of the Euclidean distance map within the 

contours. The pitch distance Dp was obtained for each grain by averaging the distances from 

its center to those of the nearest grains. Thus, the microstructural features extracted from the 

TEM images included mean values of D, Dp, and R, along with their standard deviations. 

Grains that crossed the image boundaries were automatically excluded from the post-

processing. 

The microstructural data were combined with details of sputtering conditions and magnetic 

properties. The films were varied in substrate temperature, number of layers, sputtering rates 

and time for each layer. First, to make the feature-description universal and equipment-

independent, the sputtering rate of carbon was converted to the C content of a layer while the 

sputtering time was converted to the layer thickness. Then, to unify the feature-description 

of the films with a different number of layers, the total FePt-C stack was represented as “1st 

layer”, “2nd layer”, and “top layers” as shown in Fig. 4(a) [35]. Another reason for combining 
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the layers above the second one was that these layers individually had little effect on 

predicting performance. Therefore, only the parameters corresponding to the first two layers 

as well as the total thickness and C content are considered in the following discussion. 

Among the magnetic properties, the coercivities Hc measured in the out-of-plane (OOP) and 

in-plane (IP) directions were selected, and the former together with the grain diameter, were 

considered as the main targets for ML. The ratio of IP and OOP coercivity was added as a 

parameter important for estimating the content of misoriented grains. 

 

 

Figure 4 A schematic representation of the FePt-C stack used to formulate a feature vector of deposition conditions (a). A 
heat map of Pearson’s correlation coefficients (PCC) between selected features, mean grain size D, pitch distance Dp, grain 
roundness R, their standard deviations (denoted by σ), and coercivities Hc measured both OOP and IP (b). 

 

A heat map illustrating the pairwise Pearson’s correlation coefficients (PCC) of the designed 

features and the targets is shown in Fig. 4 (b). The concentration of C in the entire stack is 

negatively correlated with the grain size D (PCC = -0.29) and the pitch distance Dp (PCC = 
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-0.47). This means that both D and Dp decrease as the total volume fraction of carbon 

increases, which is a natural trend. Higher PCC for Dp indicates that this trend is usually 

accompanied by a segregant thickening. Opposite sign of PCC for C content in 1st (-0.40) 

and 2nd (0.25) layer with OOP coercivity shows that nucleation layer with reduced C content 

could be beneficial to increase OOP coercivity, but further grain growth should be controlled 

by increasing the C content in the 2nd layer. Apparently, less amount of C in the 1st layer leads 

to better interfaces between FePt grains and the MgO substrate, which improves L10 ordering 

and coercivity respectively. For the IP coercivity, the total C content has a PCC close to zero 

due to the absence of low C content samples. However, the overall trend for individual layers 

shows a tendency for the coercivity to increase with increasing C content (PCC is 0.23 for C 

content in the second layer and 0.07 for the first layer). 

Another important parameter set in Fig. 4 (b) is the layer thicknesses. The correlation map 

shows that the 1st layer should be thin to realize media with round grains (-0.29) and high 

OOP coercivity (-0.28). Correlations with the total film thickness show that thick films tend 

to have larger grains (0.49) with better grain separation (0.32), reflecting a continuous 

volumetric growth of grains during the deposition. The increased total film thickness is 

beneficial for enhancing the OOP coercivity (0.31), but it can also lead to the formation of a 

double layer with misoriented grains and consequently an increased IP coercivity (0.38). 

Substrate temperature has significant positive correlations with grain size (0.40), pitch 

distance (0.37) and grain roundness (0.29). Thus, the temperature should be high enough to 

initiate L10 ordering, but not too high to prevent a grain growth. In addition, selecting a 
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reasonable substrate temperature helps to suppress the IP coercivity (0.44) by preventing the 

formation of in-plane variants and {111} twins. 

Finally, let us highlight some of the strongest correlations between microstructural features 

and coercivity. OOP coercivity and grain size have a strong positive correlation (0.69). 

Therefore, it is necessary to find an optimal trade-off between reducing D and increasing 

OOP Hc is necessary. Note that a narrow distribution of grain roundness indirectly means a 

small number of interconnected and coalesced grains. Therefore, improving roundness (0.45) 

and reducing its standard deviation (-0.59) are required for high OOP coercivity. Reducing 

the variances of D and Dp are also important to achieve this. 

The described competing trends motivated us to implement ML for multi-objective 

optimization of FePt-C granular films. Several ML regression models were trained to predict 

OOP coercivity and grain size based on the features related to sputtering conditions. Leave-

one-out cross-validation was used, and the performance of the regressors was evaluated by 

mean absolute error (MAE) and root mean square error (RMSE): 

𝑀𝐴𝐸 =
∑|𝑦𝑖−𝑦𝑝|

𝑛
 (1) 

𝑅𝑀𝑆𝐸 = √∑(𝑦𝑖−𝑦𝑝)
2

𝑛
 (2) 

where 𝑦𝑖 is an actual value, 𝑦𝑝 is a predicted value, and 𝑛 is the number of samples. 

The achieved performance of the gradient boosting regressors is summarized in Fig. 5(a,b). 

Despite the small number of samples and their uneven distribution across the feature space, 



 

15 
 

the overall predictive performance achieved reasonable accuracy with MAE (RMSE) of 

0.32 (0.39) T for OOP coercivity and 0.80 (1.12) nm for grain diameter. 

 

 

Figure 5 Comparison between actual and predicted values of OOP coercivity (a) and grain diameter (b) obtained using 
regressor models based on GBRs trained on sputtering conditions. The relative feature importance for coercivity (c) and 
diameter (d) is shown in the bottom section. 

 

GBRs allow analysis of the relative importance of features in predicting targets, as shown in 

Fig. 5(c,d). These bar plots are complemented by PCC signs, which are indicated by 

corresponding colors. Thickness of the total FePt-C stack and its C content play the most 
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important role in predicting OOP coercivity. The grain diameter is mainly determined by the 

C content in the 1st layer, the total thickness, and the temperature of the substrate. Feature 

importance confirms the critical role of nucleation layer for both coercivity and grain 

diameter. The demonstrated gradation of feature importance helps to quantify priorities in 

the design of HAMR media. 

The differential evolution algorithm can search for extrema of any function in a restricted 

multidimensional space, so that a complex function can be constructed based on the trained 

GBRs, taking into account all the necessary physical constraints. Each optimization session 

was run multiple times with different population sizes to ensure the convergence of the result. 

The constraints used are listed in Table 1, some of which represent the technical limitations 

such as the highest available substrate temperature, while others were chosen to address the 

limited training set. 

Table 1 Deposition details of FePt-C media proposed by the differential evolution algorithm to achieve the highest OOP 

coercivity (max µ0Hc) or a small diameter and high coercivity simultaneously (max µ0Hc & min D) considering the listed 

constraints. 

 
1st layer 2nd layer Total stack 

Temp. 

(°C) 

µ0Hc 

(T) 

D 

(nm) C content 

(vol.%) 

Thickness 

(nm) 

C content 

(vol.%) 

Thickness 

(nm) 

C content 

(vol.%) 

Thickness 

(nm) 

Constraints 0-50 1-5 0-50 2-5 0-50 6-15 300-750 - - 

max Hc 7 1.1 40 2.3 28 12.5 700 4.5 9.8 

max Hc & 

min D 
31 1.9 49 1.9 30 7.5 680 4.1 7.5 

 

First, we maximized the OOP coercivity 𝐻𝑐  by searching max
𝒔∈[𝒂,𝒃]

(𝐻𝑐(𝒔)), where 𝒔  is the 

feature vector, [a, b] – applied constraints. The optimization resulted in the feature vector 
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denoted by “max Hc” in Table 1. The differential evolution optimizer proposed a low C 

content in the nucleation layer (7 vol.%) with its drastic increase in the 2nd layer (40 vol.%) 

and a moderate amount in the total film (28 vol.%). Both the film thickness and the substrate 

temperature are relatively high – 12.5 nm and 700 °C respectively. Under these conditions, 

the OOP coercivity is expected to reach 4.5 T. At the same time, the grain diameter is 

predicted to be 9.8 nm, which is too large for practical applications. After verifying the 

stability of the coercivity prediction algorithm, we designed the optimization function 

min
𝒔∈[𝒂,𝒃]

(D(s) − 𝐻𝑐(𝒔)) to maximize the OOP coercivity 𝐻𝑐 and minimize the grain size D at 

the same time (D and 𝐻𝑐 are min-max normalized, “max Hc & min D” in Table 1). Increasing 

the C content in the first layer (31 vol.%) and reducing the total film thickness (7.5 nm) 

results in a more balanced combination of 4.1 T coercivity and 7.5 nm grain size. It should 

be noted that the algorithm can prioritize coercivity or grain diameter by introducing 

weighting coefficients into the optimization function. 

3.3 Experimental verification 

The parameter sets proposed by the optimization algorithm were tested experimentally by 

depositing several samples with sputtering parameters close to the predicted values. 

Candidate samples with the highest OOP coercivity and simultaneously high OOP coercivity 

and small average grain diameter were selected for demonstration, as described in Table 1. 

BF-TEM images and experimental grain diameter distributions of are shown in Fig. 6 (a-b). 
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Figure 6 BF-TEM images obtained for samples deposited according to the optimized sputtering conditions providing 

maximum coercivity (a) and high coercivity while keeping grain diameter as small as possible (b). Grain size distributions 

with predicted average grain diameters marked with black dashed lines are shown in the insets of (a) and (b). Data points 

forming the training set (black points), experimentally verified samples (blue and red points), and proposed candidates with 

reduced total film thickness (green points with arrow indicating the trend toward reduced thickness constraint) are shown 

in the coercivity vs. grain diameter plot (c). 

 

For both samples, the predicted coercivity values were within ± 0.1 T of the experimentally 

measured OOP coercivity. Thus, the predicted values for both coercivity and average grain 

diameter are in good agreement with the experimentally obtained values, confirming the 

applicability of our approach. Regarding the achieved target properties, the test samples show 

performance comparable to the best samples in the dataset, but not exceeding them, which 

may indicate that the applied constraints are too strict (see Fig. 6 (c)). First, we slightly 

adjusted the constraints for the sputtering conditions by reducing the minimum thickness of 

the second layer and reducing the importance of coercivity by searching for min
𝒔∈[𝒂,𝒃]

(D(s) −

0.3 ∙ 𝐻𝑐(𝒔)). This approach allowed us to reduce the predicted grain diameter to 5.6 nm at 
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the expense of the coercivity, which dropped to 2.9 T (see the first row in Table 2). The 

deposition conditions for this sample correspond to a microstructure with large pitch distance 

due to the relatively high C content (see PCCs in Fig. 4), which could reduce the media 

performance, so further fine-tuning of the constraint may be required. Second, we gradually 

reduced the constraints on the thickness of individual layers and the entire stack toward 0.2 

nm and 3 nm, respectively, while keeping the reduced priority for coercivity (Table 2). 

Although we were able to reduce the predicted average grain diameter to 4.3 nm, this was 

done at the expense of reduced total thickness. Such a trade-off is not acceptable for practical 

applications as the aspect ratio of FePt grains becomes too low. Further optimization of the 

media properties can be achieved by running an active learning loop. 

Table 2 Deposition details leading to the smallest grain diameter D (high priority) while maintaining a relatively high 

coercivity µ0Hc (low priority). Different sets were obtained by gradually relaxing the constraints (top to bottom), resulting 

in a reduction of the overall thickness from 9.7 to 3.1 nm. 

1st layer 2nd layer Total film 
Temp. 

(°C) 

µ0Hc 

(T) 

D 

(nm) C content 

(vol.%) 
Thickness 

(nm) 
C content 

(vol.%) 
Thickness 

(nm) 
C content 

(vol.%) 
Thickness 

(nm) 

42 2.0 30 0.2 45 9.6 550 2.9 5.6 

2 0.3 59 1.0 36 5.1 390 3.2 5.4 

7 0.3 56 1.0 37 4.7 330 3.2 5.0 

8 0.2 44 1.1 37 4.0 325 3.2 4.4 

0.6 0.3 42 1.0 36 3.1 370 3.2 4.3 

 

The optimization model allowed us to estimate the potential of the FePt-C media synthesized 

within a given technology and revealed possible routes for further improvement of the 

properties. The dataset used in this study includes only media with carbon as a segregant to 

realize a granular structure in the FePt system. Future extension of the dataset to other FePt-
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X systems, where X is different segregant materials such as SiO2, TiO2, Cr2O3, BN, and C 

and their mixtures [34,35], combined with different processing conditions, can lead to further 

reduction of the grain diameter without sacrificing coercivity. 

 

4. Conclusion 

In this study, we presented a method to extract nanostructural data from TEM images of FePt-

C based HAMR media using a CNN model with the U-Net 3+ architecture combined with 

machine vision. Comparison of the U-Net 3+ with popular instance segmentation models 

including Stardist and Mask R-CNN confirmed its high performance and stability, especially 

for challenging BF-TEM images. We demonstrated that the proposed processing routine can 

be used for fast automatic acquisition of microstructural features by applying it to a series of 

FePt-C granular films. The collected dataset was used to train machine learning regressors 

and build an optimization routine. As a result, deposition conditions that minimize grain 

diameter while maintaining high out-of-plane coercivity were found and experimentally 

verified. 

This work demonstrates that the proposed method is suitable for estimating the potential of 

FePt-C based granular media (e.g., with a particular segregant, substrate, stack sequence, 

etc.) and can help to guide and accelerate the development of HAMR media with increased 

areal density. The optimization model can be further extended to include additional 

parameters such as grain aspect ratio, saturation magnetization, and Curie temperature 

distribution depending on data availability. In terms of image processing, the segmentation 
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result can be used for automatic analysis of media read / write performance to further enrich 

the dataset, or to create a 3D model for micromagnetic simulation [35]. Expanding the dataset 

to hundreds or thousands of samples will allow increasing the number of parameters, using 

neural networks as regressor models, and facilitating the transition towards material 

informatics to support the realization of next-generation energy-assisted magnetic recording 

technology. 
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