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Variable-stiffness materials have a unique ability to change their stiffness reversibly in response to external 
stimuli or conditions. However, achieving ultrahigh stiffness change is often constrained by the geometric 
organization of the microstructures in most materials that exhibit variable stiffness. Therefore, to overcome 
this limitation, we introduce a metamaterial design inspired by triply periodic minimal surfaces for fabricating 
multiphase metamaterials. The specific geometric features of minimal surface designs facilitate interlocking bi-
or tri-continuous interpenetrating phases such as air, resin, and alloy within a single multiphase metamaterial. 
These multiphase metamaterials are constructed by injecting a low-melting-point alloy (LMPA) into a 3D-printed 
elastic resin mold. The thermally-induced solid-liquid phase transition of the LMPA governs the stiffness change 
in multiphase metamaterials, ranging from Kilopascals to Gigapascals. Further contributing to this phenomenon, 
the superior resilience of the elastic resin enhances the shape-memory effect of the multiphase metamaterials. 
Applications of these materials in origami and deployable structures have been successfully demonstrated, 
highlighting their reconfigurability and volume compressibility. This innovative design strategy provides the 
foundation for crafting other metamaterials with intricately arranged internal phases. In conclusion, the proposed 
multiphase metamaterials have promising potential for various engineering applications where adaptability and 
morphing capabilities are essential.
1. Introduction

Variable-stiffness materials are characterized by a reversible trans-
formation between a stiff, load-bearing state and a flexible, compliant 
state, allowing them to adapt to dynamical conditions [1]. This ability 
to change stiffness is widespread and can be observed in various phe-
nomena such as the interaction of two contractile proteins in human 
skeletal muscle [2,3], regulation of the nervous system in sea cucum-
bers [4], and changes in microstructural porosity in plants [5,6]. In 
the field of artificial materials, variable stiffness can be accomplished 
through physical means (e.g., phase changes) and mechanical strate-
gies (e.g., jamming), with the shape memory effect often manifesting 
through reversible transitions between rigid and soft states. Such fea-
tures of variable stiffness and reversible shape transformation render 
these materials essential in diverse engineering fields, including shape 
morphing [7], actuators [8,9], soft robotics [10–13], biomedical devices 
[14], wearable electronics [15,16], and vehicles [17,18].

* Corresponding author.

Synthetic materials such as metals, polymers, and magnetic flu-
ids can switch between two phases to adjust their stiffness and other 
physical properties. For example, shape-memory alloys have a rigid 
state with Young’s modulus (𝐸) of approximately 1–100 GPa; how-
ever, their soft state is typically 2–4 times softer than the rigid state, 
leading to minimal stiffness variation and limited applications where 
flexibility is required [19]. In contrast, phase transitions in substances 
such as melting polymers, waxes, and metals enable an exceptionally 
large stiffness change ratio by reversibly switching between liquid and 
solid phases. Such transitions can be triggered by various factors, in-
cluding temperature (e.g., low-melting-point alloys (LMPAs) and liquid 
crystal elastomers) [12,13,20–22], light (e.g., light-activated polymers) 
[23,24], moisture (e.g., polyurethane shape-memory polymers) [25], 
pH (e.g., pH-induced shape-memory polymers) [26], magnetic fields 
(e.g., magneto-rheological fluids) [27]. Proper encapsulation is often 
needed to contain the liquid state of melted materials for practical ap-
plications. Materials undergoing a glass transition, such as acrylonitrile 
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butadiene styrene, polylactic acid (PLA), and polyethylene polymers, 
do not necessitate external hermetic encapsulation. However, they are 
relatively weak even in their rigid state, with their stiffness variation 
restricted to approximately 5–100× [28–30]. As a result, designing and 
fabricating materials that exhibit broad stiffness variations while main-
taining the ability to bear substantial loads remains challenging.

A common strategy to realize broader stiffness variation and higher 
mechanical impedance involves using composite materials comprising a 
soft matrix and a rigid filler. LMPAs, which serve as desirable fillers for 
enhancing mechanical, thermal, and electrical properties [20,31], can 
be encapsulated in continuous structures such as meshes and scaffolds 
[32–34], or discontinuous forms such as particles [13,35,36], result-
ing in stiffness changes with a rigid-to-soft modulus ratio of up to 
1500×. To prevent LMPA leakage, the volume fraction of LMPAs in 
these composites is generally kept below 55 vol.%. Compared to ar-
chitected lattice counterparts, LMPA composites are consistently solid, 
hindering their applications where internal void spaces are necessary. 
While mechanical design strategies such as jamming and inflating can 
create delicately designed variable-stiffness materials with deployable 
microstructures, their stiffness change is relatively low (5–30×) com-
pared to LMPA composites [37–41]. Hence, it remains a challenge to 
design the microstructure of LMPA composites to achieve remarkable 
stiffness variations and explore other unprecedented functionalities.

Mechanical metamaterials, characterized by repeating building 
blocks, display unique mechanical properties and functions and are 
shaped by the synergistic effects of the constituent materials and the ge-
ometric arrangements of the microstructures [42–47]. Unlike compos-
ites, where properties are customized by blending various components, 
mechanical metamaterials exert a more direct influence on each build-
ing block, resulting in unprecedented characteristics, such as ultrahigh 
strength-to-density ratios [48–50], negative Poisson’s ratios [51–54], 
negative elastic moduli [55,56], near-zero shear moduli [57,58], de-
ployable origami [59], and nonreciprocity [60]. The rapid advance-
ments in deep learning and 4D printing technologies have significantly 
fueled the design and development of these mechanical metamaterials 
[42,61–63]. In particular, post-processing strategies, such as injecting 
stimulation-responsive materials into 3D-printed cavity structures, fur-
ther enable obtaining programmable metamaterials [64]. The intricate 
design of metamaterial building blocks provides the foundation for tai-
loring the microstructures of LMPA composites to achieve remarkable 
variable stiffness. Based on this idea, LMPA metamaterials were fabri-
cated by filling liquid metals into 3D-printed elastomer lattices [65,66]. 
However, these lattice microstructures were not optimized in terms of 
mechanical properties and geometrical features, resulting in less stiff-
ness variations.

Bi-continuous interpenetrating matrix/filler structures present a 
promising pathway to enhance the filler volume ratio and stiffness. 
These structures are found in spinodal topologies and triply periodic 
minimal surfaces (TPMSs) [67–70]. Unlike spinodoid metamaterials, 
which consist of disordered microstructures generated by simulating 
spinodal phase separation, TPMS-based metamaterials possess ordered 
microstructures with crystalline symmetry and smooth surfaces, leading 
to superior mechanical attributes [67,71]. Additionally, the chiral sym-
metry of TPMS-based metamaterials allows for twin skeletons separated 
by a sheet interface, facilitating the creation of multiphase metamate-
rials [72,73]. The TPMS topologies, being mathematically defined by 
implicit functions, can be readily generated using computational tools 
such as MATLAB or Python codes [74]. This mathematical modeling ap-
proach and the geometric features of TPMSs position them as promising 
candidates for variable-stiffness materials.

In this study, we introduced tri-continuous multiphase (air, elas-
tic resin, and LMPA) metamaterials—which exhibit highly variable 
stiffness—derived from TPMSs. Compared with LMPA composites and 
lattice-based LMPA multiphase metamaterials [65,66], the TPMSs-
based interpenetrating microstructure enables encapsulating a higher 
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volume fraction of LMPA in the metamaterials, and its topological fea-
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tures also enable more homogeneous stress distribution [71]. The resin 
phase separates the air and LMPA phases in these structures. We gen-
erated the geometries of the multiphase metamaterials with arbitrary 
volume fractions using implicit functions, and subsequently 3D printed 
samples using a rubber-like elastic resin, filled later with an LMPA. 
We then examined their mechanical properties through temperature-
dependent mechanical tests and corroborated the findings using finite 
element method (FEM) simulations. Our demonstration of encapsulat-
ing continuous LMPA within TPMSs led to multiphase metamaterials 
capable of ultrahigh stiffness changes—up to 105×—as they transi-
tioned from a stiff to a soft state through LMPA melting induced by 
heating. Finally, we highlighted their potential applications in origami 
and deployable structures, emphasizing their practical relevance and 
adaptability.

2. Methods

2.1. Modeling

A TPMS represents a smooth surface with zero mean curvature and 
cubic symmetry. Common TPMSs encompass structures such as the gy-
roid, Schwarz diamond, and Schwarz primitive. These structures can 
be mathematically expressed using an implicit function corresponding 
to the level-set approximation equation. The isosurfaces for the three 
topologies are defined as:

𝐹 (Gyroid) = cos𝑥 sin𝑦+ cos𝑦 sin𝑧+ cos𝑧 sin𝑥+ 𝑡 (1)

𝐹 (Diamond) = sin𝑥 sin𝑦 sin𝑧+ sin𝑥 cos𝑦 cos𝑧+ cos𝑥 sin𝑦 cos𝑧
+cos𝑥 cos𝑦 sin𝑧+ 𝑡

(2)

𝐹 (Primitive) = cos𝑥+ cos𝑦+ cos𝑧+ 𝑡 (3)

where the level-set parameter 𝑡 functions as a variable controlling the 
volume fractions of the two phases separated by the TPMS isosurface, 
illustrated in Fig. 1. When 𝑡 = 0, the isosurface partitions the domain 
into bi-continuous phases exhibiting chiral symmetry. As depicted in 
Fig. 1d, the volume fraction of the two bi-continuous phases varies with 
𝑡, enabling tuning the maximum and minimum stiffnesses within mul-
tiphase metamaterials. While the volume fraction of the phase in the 
normal direction follows a linear relationship with 𝑡 within these TPMS 
isosurfaces, the phase may fragment into isolated blobs in the primitive 
isosurface for 𝑡 < −1. Notably, a cubic domain may be segmented into 
three tri-continuous phases using two isosurfaces with different t val-
ues or even more interpenetrating phases with additional isosurfaces 
(Figs. 1a–c). This segmentation results in dual-phase metamaterials, 
where soft and rigid phases are demarcated by isosurfaces, or a tri-
phase metamaterial consisting of air, soft, and rigid phases, where the 
soft phase occupies the region between the two isosurfaces, separating 
the other components.

An isosurface of the TPMS topology was generated based on an im-
plicit function using MATLAB (MathWorks, USA). Next, this isosurface 
was automatically imported into an FEM simulation platform (COMSOL 
Multiphysics Ver. 6.0, COMSOL, Sweden) via the LiveLink interface. 
This interface facilitated the adjustment of volume fractions and the 
execution of geometric operations. The resultant geometry could be di-
rectly utilized for FEM simulations or exported as an STL file for 3D 
printing. The exported STL file was further modified using CAD software 
(3Ds max, Autodesk, USA) to capture unnecessary open boundaries, 
then sliced using PreForm (Formlabs, USA) before 3D printing.

2.2. Samples preparation

The design and fabrication process of LMPA-filled multiphase meta-
materials were illustrated in Fig. 2. Each specimen of the multiphase 
metamaterial, consisting of 3 ×3 ×3 unit cells with length size of 30 mm, 
was prepared using the injection molding method. Initially, a rubber-

like mold was 3D printed with an elastic photopolymer resin (Elastic 
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Fig. 1. TPMSs for designing multiphase metamaterials. (a–c) Isosurfaces of three TPMSs: Gyroid (a), Diamond (b), and Primitive (c). Isosurfaces can shrink and 
expand with a change of level-set parameter 𝑡. Cubic domain can be divided into two phases using one isosurface or three phases using two isosurfaces with different 
𝑡. (d) Volume fraction versus level-set parameter 𝑡. Volume fraction of phase in a normal direction of isosurface shows a linear relationship with 𝑡. The cubic domain 
could be segmented into unconnected blobs in a Primitive isosurface where 𝑡 < −1 or 𝑡 > 1.
50A resin, Formlabs, USA) and a 3D printer (Form 3, Formlabs, USA), 
with layer thickness set to 0.05 mm. No additional support structures 
were used in the 3D printing process to ensure a refined surface finish. 
The completed 3D-printed mold was washed with isopropanol for 10 
min, then cured at 60 °C for 20 min using Form Cure (Formlabs, USA). 
20 min is the recommended post-curing time for Elastic 50A Resin, 
which ensures that the 3D-printed parts reach their optimal mechan-
ical properties. Subsequently, the mold was filled by injecting a melted 
LMPA, which had been heated with boiling water. The LMPA is lead-
and cadmium-free LMPA and composed of 57 wt% Bismuth, 17 wt% 
Tin, and 26 wt% Indium. The LMPA-filled mold underwent degassing 
in a polycarbonate desiccator at 100 °C under high-vacuum conditions 
for 30 min. After cooling, the open boundaries of the LMPA-filled mold 
were sealed with elastic resin, followed by a final curing process. Spec-
imens with different phase volume fractions are represented by 𝑅𝑖𝐴𝑗 , 
where 𝑖 is the volume fraction of the resin and 𝑗 is the volume fraction 
of the alloy. For specimen 𝑅0𝐴0.5, the resin was removed mechanically 
by hand.

2.3. DSC test

Thermal analysis of both LMPA and elastic resin was conducted uti-
lizing a Differential scanning calorimetry (DSC) test (DSC-60, Shimadzu, 
3

Japan). A test sample weighing approximately 10 mg was placed inside 
an aluminum pan equipped with a pierced lid. The sample was heated 
to 150 °C, maintained at that temperature for 10 min, and then cooled 
to 0 °C. It was repeated for two continuous thermal cycles. The scan-
ning rate and the nitrogen flow were set at 10 °C/min and 100 mL/min, 
respectively.

2.4. Microindentation test

Elastic modulus of LMPA at room temperature was measured by 
microindentation tests using TI950 triboindenter (Bruker Co., USA) 
equipped with a high-load module and a Berkovich indenter. Before 
testing, the LMPA samples were meticulously mechanically polished. 
The maximum indentation load was predetermined at 1.5 N, with a 
holding time of 20 s and the loading and unloading rates uniformly 
set to 0.1 N/s. These indentation tests were conducted 50 times to 
ensure accuracy, with average values considered to mitigate any poten-
tial experimental errors. The indentation hardness and elastic modulus 
was evaluated using the load–displacement curve obtained from the in-
dentation test, employing the Oliver–Pharr method for the calculations 
[75–78].

2.5. Compression test

The mechanical properties of the multiphase metamaterial speci-

mens were examined using uniaxial compression tests conducted on 



Materials & Design 237 (2024) 112548X. Zheng, I. Watanabe, S. Wang et al.

Fig. 2. Design and fabrication process of LMPA-filled multiphase metamaterials. A multiphase metamaterial with target volume fraction or stiffness change can be 
retrieved according to volume fraction–level-set parameter curves and stiffness contour maps, respectively. Given modeling parameters (i.e., implicit function and 
level-set parameters), a CAD geometry is generated using MATLAB code. The CAD geometry is sliced and then printed by a 3D printer, followed by washing and 
post-curing. The 3D-printed sample is injected with liquid LMPA in a 100 °C chamber. A multiphase metamaterial is prepared after cooling and capping the open 
boundaries using elastic resin.
a motorized test stand (AG-Xplus-10kN, Shimadzu, Japan). These tests 
were conducted at a constant displacement rate of 1 mm/min. Through-
out the testing, the load and displacement data were carefully recorded, 
creating stress–strain curves. The Young’s moduli of the specimens were 
determined by linearly fitting the data within the initial linear elastic 
region, and the yield strengths were computed utilizing the 1% offset 
stress method. Additionally, high-temperature examinations were per-
formed inside a thermostatic chamber (TCE-N300, Shimadzu, Japan). 
For these tests, the specimens were first preheated to 100 °C and main-
tained at this temperature for 10 min before the loading process com-
menced.

2.6. FEM simulations

The mechanical properties of the multiphase metamaterials were 
extensively and quantitatively analyzed using FEM simulations (COM-
SOL Multiphysics Ver. 6.0, COMSOL, Sweden). In the simulations con-
ducted at room temperature, the elastic resin was characterized us-
ing an incompressible neo-Hookean model with Young’s modulus of 
0.6615 MPa; while the LMPA was characterized using a compressible 
neo-Hookean model with Young’s modulus of 53.47 GPa based on the 
equivalent Young’s modulus measured by the microindentation test and 
an assumption that the Poisson’s ratio is 0.3, and an isotropic perfectly 
plasticity model. The yield strength of the LMPA was determined as 
738 MPa by minimizing the difference between the experimental and 
computational results of compression tests in the multiphase metama-
terial specimens. The elastic resin model remained unchanged during 
high-temperature simulations, but the LMPA was modeled as a liquid 
material which is an incompressible low stiffness material using an in-
compressible neo-Hookean model with Young’s modulus of 1 Pa. To en-
sure both computational efficiency and accuracy, the geometries were 
meshed using approximately 2 × 105–3 × 105 second-order tetrahedral 
solid elements. The simulations were conducted using the representa-
tive volume element technique, employing a parametric sweep of the 
displacement along the z-axis and applying periodic boundary condi-
tions [79,80]. These FEM simulations generated the macroscopic stress–
strain curves corresponding to the compression tests and the Young’s 
moduli of the multiphase metamaterials.

3. Results and discussion

3.1. Material design strategy

To achieve a broad spectrum of stiffness variation, the design must 
incorporate a rigid phase capable of reversible transition between melt-
ing and solid states upon mild stimuli, a soft phase that is sufficiently 
robust and resilient to encapsulate the rigid phase, and a significant 
stiffness disparity between the soft and rigid phases. Additive manufac-
4

turing and injection molding were employed to fabricate the designed 
Fig. 3. DSC curves of low-melting-point alloy and elastic resin.

multiphase metamaterials. For optimal surface finish, elasticity, and re-
silience, the soft phase was 3D printed as a mold utilizing rubber-like 
elastic resin via stereolithography (SLA) technology. This elastic resin 
is modeled as an incompressible neo-Hookean solid with Young’s mod-
ulus of 0.6615 MPa [51]. The rigid phase was selected as a LMPA 
as it has adequate Young’s modulus and melting pointing. The LMPA 
exhibits Young’s modulus of 53.47 GPa as determined through microin-
dentation tests. DSC analysis reveals the LMPA’s melting point to be 
approximately 82.4 °C, while the elastic resin lacks any discernible melt-
ing or glass transition within the 0–150 °C range (Fig. 3). This property 
enables the multiphase metamaterial composed of LMPA and resin to 
significantly soften upon heating and retain its deformed shape after 
cooling.

To demonstrate the feasibility of creating such multiphase metama-
terials, we utilized 3D printing to fabricate five distinct gyroid topolo-
gies, each with different volume fractions, using a rubber-like elastic 
resin. These resin molds encapsulated the LMPA, which was subse-
quently melted and injected into the molds. While preparing these 
multiphase metamaterials, the open boundaries of the LMPA phase were 
carefully captured while preserving the air phase. The resin framework 
could be mechanically removed for a pure gyroid topology consisting 
solely of LMPA. Fig. 4a compares the renderings and the actual speci-
mens of the multiphase metamaterials, showcasing variations in volume 
fractions. The structure of each multiphase metamaterial sample is com-
posed of 3 × 3 × 3 unit cells. Additionally, the outer boundaries of the 
LMPA phases within the specimens were covered in a thin layer of resin, 
providing a well-defined and intricate structural design. However, some 
bubbles are observed in the prepared samples, implying that the LMPA 
phase does not fully fill the blank channels, as shown in Fig. 4b. The 
surface of LMPA is relatively rough, which attributes to the surface fin-
ish of the SLA 3D printing technique (Fig. 4b). The bubble problem can 
be alleviated using a longer degassing time, and the surface roughness 
can be improved using a higher-resolution 3D printing technique, such 

as projection micro-stereolithography 3D printing [65,81].
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Fig. 4. Multiphase metamaterials with different volume fractions. (a) Renderings and specimens of multiphase metamaterials derived from Gyroid topology. Multi-
phase metamaterials with different phase volume fractions are represented by 𝑅𝑖𝐴𝑗 , where 𝑖 is the volume fraction of the resin and 𝑗 is the volume fraction of the 
alloy. Multiphase metamaterials with higher ratios of LMPA can also be prepared using structures shown in Fig. 1. (b) Defects of prepared samples, showing bubbles 
(left) and rough surface (right). (c) Sequence of progressively deformed configurations of the specimen, 𝑅0.17𝐴0.17. (d) A sample after large deformation, suffering 
from structural failure (upper left), resin fracture (upper right), and cracking in LMPA (bottom).
3.2. Mechanical properties

The mechanical behavior of the specimens was explored using uni-
axial compression tests at both room temperature and 100 °C. Fig. 4c 
shows a sequence of progressively deformed shapes of the specimen, 
𝑅0.17𝐴0.17, under three different levels of longitudinal engineering 
strain within 𝜀 < 0.1. Fig. 4c also shows corresponding simulation re-
sults, where the von Mises stress concentrates along loading direction 
and form a series of vertically continuous helix ribbons. The specimen 
witnesses a typical deformation of porous materials without clear frac-
ture or crack, attributing to its optimized topology compared with other 
lattice-based structures [68,71]. However, the LMPA would crack when 
undergoing larger deformation, as shown in Fig. 4d where 𝜀 = 0.25. 
Also, the fracture of resin will also happen at large deformations 
because of the lower ultimate tensile strength (3.32 MPa) and tear 
strength (19.1 kN/m) of the resin. Fig. 4d also shows another speci-
men, 𝑅0.33𝐴0.33, cracking in its resin surface after a large deformation 
of 𝜀 = 0.2. To alleviate fracture and crack, the resin boundary should be 
thicker and large deformation should be avoided.

Fig. 5a illustrates the experimental stress–strain curves from the 
tests conducted at room temperature, visually represented as ribbons. 
Each ribbon encompasses the area between the lines from three sepa-
rate uniaxial compression tests performed on a single specimen. These 
stress–strain curves display the standard characteristics of plastic de-
formation, consisting of an initial linear elastic region followed by a 
plastic plateau. Young’s moduli of the specimens were determined by 
5

linearly fitting the elastic region, while the yield strengths were identi-
fied as the 1% offset stress within the stress–strain curves. As written in 
Section 2.6, the yield strength of the LMPA was calculated based on the 
stress–strain curves of compression tests of the multiphase metamaterial 
specimens. At room temperature, the stiffness and strength of these mul-
tiphase metamaterials are primarily due to the LMPA, which behaves as 
a solid and robust material. However, when subjected to temperatures 
100 °C above the melting point of LMPA, these metamaterials become 
considerably softer, exhibiting altered deformation behavior as depicted 
in Fig. 5b. In this state, the stress–strain curves remained linear within 
a 10% engineering strain during compression, resulting in the Young’s 
moduli ranging from approximately 50–300 kPa.

FEM simulations were conducted to corroborate the experimental 
findings and determine the mechanical characteristics of both LMPA 
and the elastic resin. Fig. 4a presents the geometric models employed 
in the FEM analysis, including two or three constitutive material com-
ponents (LMPA, elastic resin, and air) equipped with temperature-
dependent parameters. The slight difference between simulation and 
experimental results came from the surface finish and uncured surface 
of 3D printed samples, the bubbles of residual air inside the samples, 
the partially oxidized LMPAs, and the different boundary conditions. 
These simulation outcomes showed strong alignment with the experi-
mental results at both room temperature and 100 °C (Figs. 5a and b), 
thereby confirming the precision and effectiveness of the FEM model in 
replicating real-world behavior.

We further analyzed Young’s moduli of these multiphase metama-

terials at room temperature and 100 °C, with the results depicted in 
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Fig. 5. Mechanical properties of multiphase metamaterials with different volume fractions. (a,b) Stress–strain curves from uniaxial compression tests and FEM 
simulations at room temperature (d) and 100 °C (e). (c) Young’s moduli of these multiphase metamaterials at room temperature and 100 °C.
Fig. 5c. For the specimen designated as 𝑅0.5𝐴0, Young’s moduli ex-
hibited negligible change between the two temperatures, substantiating 
that the elastic resin’s properties remain stable within 25–100 °C tem-
perature range. In contrast, the other specimens demonstrated a pro-
nounced alteration in stiffness: their Young’s moduli decreased sharply 
from approximately 1.99 GPa, 6.66 GPa, and 13.4 GPa at room temper-
ature to 3.79 ×10−5 GPa, 1.11 ×10−4 GPa, 1.76 ×10−4 GPa at 100 °C for 
𝑅0.33𝐴0.33, 𝑅0.17𝐴0.17, and 𝑅0.5𝐴0.5, respectively. This transformation 
in stiffness reaches an ultrahigh factor of 105×, a performance that out-
shines most materials with variable stiffness achieved through different 
mechanisms, such as glass transition [28–30,82–84], jamming [38–41], 
and melting [13,24,32–36,85–87], as illustrated in Fig. 6.

The extraordinary shift in stiffness within the proposed multiphase 
metamaterials is predominantly governed by the melting process, where 
the phase transition of the LMPA from liquid to solid markedly boosts 
stiffness and strength. Unlike other materials where melting is the 
dominant factor affecting stiffness variability, the exceptional stiffness 
transformation in the multiphase metamaterials can be attributed to 
specific geometric attributes. A two-phase metamaterial is character-
ized by bi-continuous interpenetrating phases (i.e., LMPA and resin), 
while a three-phase metamaterial includes tri-continuous interpenetrat-
ing phases (i.e., LMPA, resin, and air). However, in the most melting-
governed variable-stiffness materials, LMPAs are typically encapsulated 
in either discontinuous forms, such as particles and flakes, or nontopo-
logical forms, such as meshes and scaffolds [13,32–36]. This encap-
sulation often leads to comparatively lower shifts in the rigid-to-soft 
modulus ratio. Although certain ionogel based on glass transition can 
achieve a remarkable stiffness change ratio of up to 1.1 × 105 [83], 
their maximum attained Young’s modulus (85 MPa) is remarkably low 
as comparison with that exhibited by multiphase metamaterials (53.47 
GPa).

Given the remarkable qualitative and quantitative alignment be-
tween the experimental results and FEM simulations, we further investi-
gated the impact of the volume fractions of the three phases (i.e., LMPA, 
resin, and air) on the stiffness of the TPMS-based multiphase metama-
terials using FEM models. As the level-set parameter 𝑡 can easily adjust 
the volume fraction of each phase, we conducted a parametric study by 
integrating MATLAB with COMSOL Multiphysics. MATLAB generated 
multiphase metamaterial geometries through implicit functions, while 
COMSOL Multiphysics was used to perform FEM simulations. Fig. 7
illustrates the stiffness maps of the multiphase metamaterials created 
from the three distinct TPMS topologies. Each map, containing 28 data 
points, was generated through 2D contour plotting. The locations corre-
sponding to the gyroid topology specimens utilized in the experiments 
6

are specifically marked in Fig. 7, spanning a broad area within the data 
map. For all three categories of TPMS topology-based multiphase meta-
materials, the stiffness maps at room temperature displayed a consistent 
pattern: their Young’s moduli were primarily determined by the vol-
ume fraction of the LMPA and were only marginally affected by the 
other two phases. The Young’s moduli ranged from 0 Pa (when occu-
pied entirely by the air) phase to 53.47 GPa (when filled with LMPA). 
Conversely, Young’s moduli at 100 °C were considerably influenced by 
the volume fraction of the rubber phase, increasing from 0 Pa to 0.6625 
MPa when filled with the resin phase. The slight discrepancy between 
the primitive topology and the other two topologies within the stiffness 
maps can be attributed to isolated blobs in the primitive topology at 
low volume fractions, as depicted in Fig. 1d. These stiffness maps effec-
tively demonstrate that multiphase metamaterials can achieve a diverse 
range of Young’s moduli, allowing for tunable stiffness.

To elaborate the relationship between structural types, stiffness 
variation, and multiphases of these multiphase metamaterials, we fur-
ther build the scaling laws of relative Young’s modulus following the 
Gibson–Ashby model [90]. As the stiffness of these multiphase meta-
materials is dominated by the volume fraction of the LMPA phase at 
room temperature and the resin phase at 100 °C, respectively, the scal-
ing laws of these topologies are fitted according to the temperature. 
At room temperature, the effective Young’s moduli of these multiphase 
metamaterials can be estimated by fitting the data from Figs. 7a–c:

𝐸room
Gyroid =𝐸alloy × 0.9769𝜌1.968alloy ,𝑅

2 = 0.9989 (4)

𝐸room
Diamond =𝐸alloy × 0.9935𝜌1.906alloy ,𝑅

2 = 0.9998 (5)

𝐸room
Primitive =𝐸alloy × 0.9963𝜌2.291alloy ,𝑅

2 = 0.9997 (6)

Similarly, at 100 °C, the effective Young’s moduli can be fitted according 
to Figs. 7d–f:

𝐸100 °C
Gyroid =𝐸resin × 0.9675𝜌1.808resin ,𝑅

2 = 0.9955 (7)

𝐸100 °C
Diamond =𝐸resin × 0.9819𝜌1.761resin ,𝑅

2 = 0.9977 (8)

𝐸100 °C
Primitive =𝐸resin × 0.9798𝜌1.900resin ,𝑅

2 = 0.9885 (9)

where 𝐸alloy = 53.47 GPa and 𝐸resin = 0.6615 MPa are the Young’s mod-
uli of the LMPA and the resin, respectively. 𝜌alloy and 𝜌resin are the 
volume fractions of the LMPA and the resin, respectively. Consequently, 
for a multiphase metamaterial with given volume fractions of each 
phase, its effective Young’s moduli at room temperature and 100 °C can 

be estimated by the Equations (4)–(9).
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Fig. 6. Stiffness change of multiphase metamaterials and other variable-stiffness materials. Melting-based multiphase metamaterials show high stiffness change 
among others. The theoretical one represents the highest and lowest Young’s moduli of a solid cube, i.e., LMPA and resin cubes. Different variable stiffness 
mechanisms have been compared in this figure, including glass transition mechanism: polycaprolactone (PCL)-based shape-memory polymer [82], ionogels [83], 
polydimethylsiloxane (PDMS)-montmorillonite layered nanocomposites [84], Acrylonitrile butadiene styrene (ABS) [28], polylactic acid (PLA) [29], and polyethy-
lene (PE) [30]; jamming mechanism: granular jamming using interlocked particles [38], granular jamming in architected lattices [39], tendon jamming [40], and 
granular jamming [41]; melting mechanism: liquid metal-polymer composites [34], Field’s metal composites [13], lamellar crystal polymer network [85], melt-
processable shape-memory hydrogels [86], organohydrogels [87], shape-memory filler in PDMS [24], and Ga-filled metamaterial with FCC structure [65]; and 
others: magnetoactive microlattice metamaterials [81], nitinol [88] and human muscle [89].

Fig. 7. Stiffness map of multiphase metamaterials based on three TPMS topologies. The values of parameter 𝑡 in each were chosen from Fig. 1, where each type of 
TPMS geometry has 25 different pairs of 𝑡 values. Each contour map was plotted using the 25 multiphase metamaterials and 3 pure phases (i.e., alloy, rubber, and 
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air), i.e., 28 geometries with different volume fractions. (a) Gyroid, (b) Diamond, (c) Primitive at room temperature; (d) Gyroid, (e) Diamond, (f) Primitive at 100 °C.
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Fig. 8. Applications of multiphase metamaterials. (a) Origami structure based on a multiphase metamaterial. Unfolded cube net made of multiphase metamaterial 
can be folded into a cube while keeping the deformed state; it will recover to its original shape when heated again. (b) Folded multiphase metamaterial cube can bear 
an adult’s weight without any deformation, but a folded PLA cube deformed and bent. (c) Deployable structure based on multiphase metamaterials. It can shrink 
under uniaxial compressive load after heated. (d) Gallery of multiphase metamaterials based on TPMS topologies, including a hollow cylinder, torus, mushroom, 
and egg.
3.3. Applications

To highlight the benefits of the proposed multiphase metamateri-
als, we designed both an origami structure and a deployable structure, 
showcasing the exceptional variable stiffness and intricate geometrical 
topological microstructure, respectively. Origami structures and deploy-
able structures are associated with “foldable” and “deployable”, re-
spectively. They are potential candidates in aerospace engineering and 
architectural engineering, such as small satellites and portable houses 
[91,92]. In these multiphase metamaterials, the significant change in 
stiffness grants them enhanced load-bearing capacity, while the porous 
microstructure allows them to alter their configuration through fold-
ing and deploying. We crafted an origami structure (specifically, an 
unfolded cube net) measuring 20 mm in length and 4 mm in thick-
ness, as depicted in Fig. 8a. The structure was fabricated by injecting 
LMPA into a 3D-printed elastic resin mold. Fig. 8a illustrates transform-
ing the unfolded cube net into a cube by heating and softening it with 
boiling water. As the melting temperature of LMPA is approximately 
82.4 °C, the cube net can be softened and made deformable by im-
mersing it in hot water. Once heated beyond its melting temperature, 
the cube net can be easily folded, with the deformed shape remain-
ing intact upon cooling. Remarkably, owing to the residual stresses in 
the elastic resin, the folded cube spontaneously reverted to its original 
shape when reheated above the melting temperature, further evidenc-
ing the shape memory effects inherent in multiphase metamaterials. 
Notably, the folded cube could bear an adult’s weight (approximately 
65 kg) without noticeable deformation, as shown in Fig. 8b. In con-
trast, a cube constructed from 3D-printed PLA polymer, although also a 
stiffness-variable material with the exact dimensions as the folded cube, 
deformed and bent under the weight of an adult because of the low stiff-
ness. This comparison underscores the superior stiffness and strength of 
multiphase metamaterials, thus indicating their potential applications 
in various engineering domains.

We subsequently crafted a deployable structure utilizing a primitive 
topology with dimensions of 4 × 4 × 4 unit cells (as depicted in Fig. 8c). 
This structure consists of LMPA encapsulated in an elastic resin. Known 
as a type of auxetic metamaterial with a negative Poisson’s ratio [51], 
the primitive topology can contract laterally when subjected to a uni-
axial compressive load because of the buckling deformation behavior 
of its ligaments. This unique contraction allows the primitive topology 
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to form a reversibly dense structure, creating a deployable configura-
tion. Fig. 8c illustrates the contraction of the deployable structure into 
a reversibly dense block when heated with boiling water. Remarkably, 
the volume of the deployable structure shrank by approximately 50%, 
from 503 mm3 to 403 mm3. This degree of compressibility surpasses 
most variable-stiffness materials, which are generally solid and incom-
pressible. While some jamming-based materials with variable stiffness 
can exhibit volume compressibility, they typically demonstrate a minor 
stiffness change within a 100× range, as shown in Fig. 6 [38–41].

Beyond their highly adaptable stiffness, intricate geometrical topo-
logical microstructure, and excellent load-bearing capacity, multiphase 
metamaterials also boast the ability to form arbitrary geometries, based 
on the modeling method employed. These materials can be shaped 
into virtually any desired form using implicit functions to tune the 
microstructures and tailoring macroscale shapes within any boundary. 
Various multiphase metamaterial geometries such as hollow cylinder, 
torus, mushroom, and egg can be constructed using MATLAB code, 
commercial computer-aided design (CAD) software packages, or custom 
geometry generators [67,68,93], as shown in Fig. 8d. This versatility in 
shaping positions multiphase metamaterials as promising candidates for 
applications requiring complex and tailor-made forms.

4. Conclusions

In this study, we introduced a novel multiphase metamaterial in-
spired by TPMS topologies. Comprising up to three phases (LMPA, elas-
tic resin, and air), these multiphase metamaterials exhibit remarkable 
stiffness variability of 105×, driven by a melting-based phase transition. 
The unique geometric features of the multiphase metamaterials, includ-
ing bi- or tri-continuous interpenetrating microstructures, afford addi-
tional properties such as shape-memory effects, volume compressibility, 
and mechanical superiority as compared to other variable-stiffness ma-
terials. At room temperature, the multiphase metamaterials are highly 
rigid, with Young’s modulus reaching into the tens of gigapascals. How-
ever, they become pliable and reconfigurable when heated above their 
melting temperature (approximately 82.4 °C). Notably, these materials 
maintain their deformed shape and automatically revert to their origi-
nal form after reheating. Moreover, we presented stiffness maps of these 
multiphase metamaterials and explained methods to tailor their stiff-
ness at various temperatures.

However, their fabrication is associated with certain challenges: it 

is difficult to use the injection molding method to create multiphase 
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metamaterials with submillimeter dimensions because of the surface 
tension of the melted alloy. To overcome this issue, multimaterial 3D 
printing has emerged as a promising technique for fabricating such 
structures using resins and LMPAs [94]. Using LMPAs and other metals 
with lower melting points, such as Field’s metal (melting point 60 °C) 
and gallium (melting point 30 °C), could reduce the energy consump-
tion required to trigger the stiffness-variable operation. Admittedly, for 
the metamaterials which have temperature-dependent properties, it is 
not easy to control in practice. Combining advanced additive manufac-
turing technologies, 3D-printable field-responsive smart materials, and 
flexible modeling methods provides a foundation for the application 
of multiphase metamaterials, with potential areas of use including ac-
tuators, soft robotics, shape morphing, and wearable electronics, thus 
highlighting the vast potential of this innovative material design.
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