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Neuromorphic learning, working memory, and
metaplasticity in nanowire networks
Alon Loeffler1*†, Adrian Diaz-Alvarez2,3*†, Ruomin Zhu1, Natesh Ganesh4,5, James M. Shine1,6,7,
Tomonobu Nakayama1,3,8, Zdenka Kuncic1,3,9*

Nanowire networks (NWNs)mimic the brain’s neurosynaptic connectivity and emergent dynamics. Consequent-
ly, NWNsmay also emulate the synaptic processes that enable higher-order cognitive functions such as learning
andmemory. A quintessential cognitive task used tomeasure humanworkingmemory is the n-back task. In this
study, task variations inspired by the n-back task are implemented in a NWN device, and external feedback is
applied to emulate brain-like supervised and reinforcement learning. NWNs are found to retain information in
workingmemory to at least n = 7 steps back, remarkably similar to the originally proposed “seven plus or minus
two” rule for human subjects. Simulations elucidate how synapse-like NWN junction plasticity depends on pre-
vious synaptic modifications, analogous to “synaptic metaplasticity” in the brain, and how memory is consol-
idated via strengthening and pruning of synaptic conductance pathways.
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INTRODUCTION
The brain’s powerful information processing capacity can be largely
attributed to neuronal microcircuits established by synaptic connec-
tivity patterns (1, 2). Precisely how neurosynaptic connectivity gives
rise to higher-order cognitive functions such as learning and
memory remains elusive (3). However, an important clue is that
neural connectivity is spatiotemporally sparse and dynamic (4, 5).
Here, learning and memory are demonstrated in a unique physical
substrate with these properties.

Nanowire networks (NWNs) emulate the physical nature of
neurons and synapses in the brain (6). They are “neuromorphic”
by virtue of not only their efficient integration of processing and
memory in nanowire-nanowire cross-point junctions (7, 8) but
also their ability to mimic both threshold-driven spike-like neuro-
nal dynamics and conductance-based synapses (9, 10). Nanowire
junctions exhibit resistive memory (“memristive”) switching
between high and low resistance states (11). Because of NWN
self-assembly, these memristive junctions are interconnected in a
heterogeneous circuitry with recurrent feedback loops (12). Thus,
NWN devices operate in a fundamentally different way from top-
down fabricated memristor devices in a cross-bar architecture (8).
In particular, NWNs exhibit emergent nonlinear dynamics as a
result of the interplay between their memristive junctions and het-
erogeneous, recurrent network connectivity (13–15).

Previous studies have demonstrated how nonlinear dynamics
can be harnessed for learning by treating the NWN as a physical
“reservoir” in a reservoir computing paradigm [e.g., (9, 13, 15–

23)]. This paradigm exploits the network’s ability to nonlinearly
transform dynamical input signals into a higher-dimensional
feature space, such that the outputs are linearly separable (24–26).
NWN device readouts can then be used in a highly computationally
efficient linear output layer, where only linear weights need to be
trained to complete a desired machine learning task (27). In con-
trast, learning in the brain is thought to occur via three main mech-
anisms (28): supervised learning, typically linked to the cerebellum
(29–32); reinforcement learning (33), typically linked to the basal
ganglia (33–37); and unsupervised learning, typically linked to the
cerebral cortex (28). In our recent study (38), we demonstrated
Hebbian-like unsupervised learning via signal transduction path-
ways in NWNs. We reshaped these conductance pathways by alter-
ing the spatial location of input and output electrodes, as well as the
order in which they were activated.

Such “dynamic pathway tuning” revealed that NWNs preserve
information from previously established pathways when forming
new pathways through the network, analogous to how synaptic plas-
ticity in the brain depends on previous synaptic modifications (39).
Here, we investigate the other two mechanisms of learning, which
are more context dependent. Supervised learning encapsulates an
iterative process whereby the system’s response to a given input is
evaluated against a desired outcome, and deviations from that
outcome are used to adjust adaptive elements within the
system (40).

In reinforcement learning, synaptic weights are modified in re-
sponse to information related to positive (or negative) feedback
(33). Here, these brain-inspired learning mechanisms are physically
implemented in NWNs, extending previous studies (38, 41) by ex-
plicitly applying context-dependent external feedback.

In addition to demonstrating brain-like learning in NWNs, we
also demonstrate working memory (WM) by implementing se-
quence memory tasks inspired by the well-known cognitive task,
the n-back task (42–45). In experiments with human subjects, the
n-back WM task requires participants to identify whether each
stimulus (e.g., visual pattern) in a sequence matches a stimulus
that was presented n-steps back (43). As n increases, reaction
times tend to increase, and accuracy tends to decrease due to
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processing load (44, 46). Furthermore, regions of the brain related
to verbal WM processes tend to show increasing magnitudes of ac-
tivation during large n values (46). WM is thought to pertain to
short-term memory and involve information manipulation (47,
48). The ability to temporarily hold and manipulate information re-
quires adaptive processing of multiple incoming dynamical inputs
while retaining information about previously encoded input. This
means that synaptic connections that form memories must be pro-
tected from being overwritten when storing new information
(49, 50).

Through sequence memory tasks inspired by the n-back WM
task, we demonstrate the ability of NWNs to recall previous infor-
mation while continually processing new information. In addition,
we show how information initially in short-term WM may be con-
solidated into long-term memory through physical reinforcement
learning (PRL), which manipulates topological reconfiguration of
NWNs via pathway strengthening and pruning.

RESULTS
Figure 1 presents an overview of the NWN device (both physical
and simulated) and the setup designed to implement supervised
learning and PRL in tasks inspired by the n-back protocol. The
average network density for the physical system shown in Fig. 1A
is ≈0.76 nanowires/μm2, similar to that used in the study by
Diaz-Alvarez et al. (14). The simulated network had 698 nanowire
nodes and 2582 edge junctions (0.12 nanowires/μm2). See Methods
for full details of the physical and simulated NWN device.

Figure 1B summarizes one sample epoch, consisting of training
and testing strategies developed to demonstrate the n-back protocol
using the device. During training, the n-back protocol involves the
NWN receiving n-1 unique nontarget samples after receiving a
target pattern cue. The NWN is trained to recognize the target
cue via a supervised learning strategy, which nudges a selected
output toward a fixed current threshold θ, with all other outputs
nudged away from θ. The nudging protocol occurs via a gradient
descent-like method (see Eq. 2 in Methods), using the discrepancy
between actual and desired output currents. While supervised
learning is implemented during training, PRL is instead implement-
ed after testing recall of the target cue, when the value of θ can be
modified to provide feedback to the NWN. To test the network’s
WM, θ is kept unmodified, corresponding to no PRL implemented.
With PRL, θ is changed ahead of the next epoch based on the net-
work’s performance: Target outputs receive more current, and non-
targets receive less current. This tests the network’s consolidation of
items initially held in short-term WM into long-term memory. In
summary, supervised learning nudges the output currents toward θ
during training, while PRL controls the value of the current thresh-
old θ after testing. See Methods for full details.

Task 1: Physical binary classification
Figure 2 compares results for classification of two 2 × 2 patterns (i.e.,
four inputs to the network) for n = 2 without and with reinforce-
ment (see full task 1 description in Methods, including Algorithm
1). Both experimental (Fig. 2A) and simulation (Fig. 2B) results
demonstrate that once PRL is introduced, it markedly improves
binary classification accuracy under the n = 2 protocol (i.e.,
testing after two training samples of the nontarget pattern are pre-
sented to the network). In experiment, 44 of 50 epochs achieve an

accuracy of 100% with PRL, compared to only 23 of 50 without.
Similarly, in simulation, 32 of 40 epochs are 100% accurate with
PRL and 23 of 40 without. The worse performance without PRL
results from the network successfully training and recalling the
primary conduction pathway for one target drain, but not the
other. This is most evident in the experimental results. Inset
panels in Fig. 2 show that supervised learning increases current
toward the respective threshold (θ1 or θ2) of the target drain as a
consequence of voltage adjustments on the corresponding electrode
(see fig. S1 for drain voltages).

Simulated network connectivity maps (Fig. 2B) qualitatively
show the conductance pathways that form between source and
drain electrodes for each pattern. Quantitatively, memristive junc-
tions along the pathways experience a conductance gain under PRL,
whereas without reinforcement, junctions can decay and reset (see
fig. S2).

Task 2: Complex binary classification
Figure 3 shows results for binary classification of 3 × 3 patterns
(nine inputs) of either “+” or “x” (5-bits). For this task, the
number of samples, n-1, between the first training sample and the
testing sample was increased. This meant that n-back increased as n
= 2,3,4,5, or 6 (see Fig. 3A and task 2 description in Methods). Oth-
erwise, task setup and implementation were similar to task 1.

Both experimental and simulation results in Fig. 3D show a
marked improvement in classification accuracy with reinforcement
compared to without reinforcement. In experiment, accuracy in-
creases from 0.48 to 0.71 for n = 2, and the maximum increase is
from 0.41 to 1.00 for n = 6. Similarly, in simulation, accuracy in-
creases from 0.71 to 0.93 for n = 2, and the maximum increase is
from 0.53 to 0.85 for n = 6. In experiment, mean accuracy ranges
from 0.71 to 1.00 when reinforcement is applied, while without re-
inforcement, it is similar to chance levels (mean accuracy ranges
from 0.41 to 0.56). In contrast, simulation results with reinforce-
ment show a narrower accuracy range (0.93 to 0.85), and simulation
results without reinforcement show a steady decline with n (0.71 to
0.53). This is not observed in the experimental results, which show a
marked increase in accuracy under reinforcement for n > 3.

These results can be understood in terms of the memristive
switching junctions responsible for the conductance pathways
that represent the physical manifestation of binary classification
by the network. During training, the NWN establishes input-
output conductance paths for each of the two patterns (Fig. 3C).
As n increases, the NWN receives more training samples from non-
target patterns than the target. When this occurs without reinforce-
ment, the memristive junctions corresponding to the target pattern
decay, so that when the target pattern is next presented, the decaying
conductive nanofilaments must reform. In experiment, a 3-hour
wait time between each n is implemented (see Methods);
however, it is difficult to determine to what extent the conductive
pathways have decayed. In task 2 simulations, all junctions were
completely reset between each n trial, so the accuracy without rein-
forcement decreases consistently with n. The higher accuracy for n
= 2 to 3 compared to the experimental results can be attributed to
the assumption made in the model that all junctions decay at the
same rate (see fig. S4 for additional results on varying the junction
decay parameter). With reinforcement, the conductance pathways
are prevented from decaying, so the NWN is able to recall the
target pattern, even for large n. The increase in accuracy with n
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evident in the experimental results may be attributed to nanofila-
ments forming faster than they decay. This is not observed in the
simulation results due to the model assumptions mentioned
above. This reinforcement effect is similar to the notion of popula-
tion coding in the mammalian brain (51), although it is difficult to
disentangle innate from learned features of classification in in vivo
biological brains (52). This highlights the importance of using non-
biological, physical neural networks to understand how information
is processed in networks like the brain.

Task 3: Working memory
Figure 4 (A and B) show a schematic of the WM n-back task, where
the NWN receives varying nonrepeat sample 3 × 3 patterns both
before and during the n-back sequence (see task 3 description in
Methods, including Algorithm 2). During training, each pattern is
presented only once and in random order. Unlike the previous
tasks, therefore, no repeat training is possible during a single train-
ing-testing epoch, and n varies from epoch to epoch.

Figure 4C shows the experimental and simulation recall accuracy
results, sorted by n, while Fig. 4D shows the corresponding results
plotted per epoch. Both the experimental and simulation results
show that themean accuracy in recalling the target pattern improves
markedly under reinforcement compared to no reinforcement.
Without reinforcement, the experimental accuracy declines steadily
with n from 0.61 (n = 1) to 0.37 (n = 7), while the simulation accu-
racy declines more steeply from 0.95 (n = 1) to below chance accu-
racy (1/7 ≈ 0.14 odds of correctly selecting the target pattern
at random).

Although a contributing factor may be differences between sim-
ulation and experimental time scales (as the experimental NWN has
many more wires and junctions and a 3-hour rest period was in-
cluded between each trial), the difference between experimental
and simulation results without reinforcement may be primarily at-
tributed to differences in junction decay rates. Specifically, the sim-
ulation model assumes that all junctions decay at the same rate,
whereas experimental NWNs are heterogeneous, with a range of fil-
ament formation and decay rates due to varying nanowire thick-
nesses and stochastic effects in the nanoscale junctions. The
simulation results reveal that, with no reinforcement, recall is
highly sensitive to junction decay rates; both recall accuracy and
maximum n-back values decline with faster decay (see fig. S5),
i.e., as previously established pathways are more quickly forgotten.
This is analogous to metaplasticity in the brain, which describes the
dependence of synaptic plasticity on the history of synaptic modifi-
cations (39) .

Without reinforcement, the n-back task is a measure of WM.
With reinforcement, both experimental and simulation results in
Fig. 4 (C and D) show a high recall accuracy is maintained for all
n. This indicates that short-term WM has changed to a longer-
term memory that is independent of forgetting associated with
junction decay. The mechanism responsible for this memory con-
solidation under PRL is explored next.

Network connectivity
The network connectivity snapshots presented in Fig. 5 reveal the
simulated NWN states during early (t = 14 s) and middle (t = 558 s)
stages of testing target pattern recall from WM during the n-back
task (for n = 3). The corresponding input pattern is shown on the
left of Fig. 5 (A and C), with zeros (purple) and ones (green) corre-
sponding to inactive and active sources, respectively. During the
first testing epoch (t = 14 s), the connectivity maps (Fig. 5, A and
C) and Gj histograms (Fig. 5F) with and without reinforcement are
identical. This is because conductance paths are not yet conditioned
by PRL. By the later testing epoch (t = 558 s), however, the effect of
reinforcement is noticeable, with a strong conductance path to the
target drain now evident (Fig. 5D) and weaker paths to nontarget
drains. This occurs because the target drain is reinforced by increas-
ing the current output threshold, while all other nontarget drains
are “punished” with lower current thresholds. Consequently, con-
ductance pathways to the target drain are strengthened and remem-
bered by the network, while pathways to nontargets are pruned and
forgotten.

The effect of reinforcement is visualized in Fig. 5E, where red
paths represent pathways strengthened by reinforcement (i.e.,
higher Gj) over time, and blue paths represent pruned pathways.
The difference ΔGj is calculated by first subtracting the maps at
t = 14 s and t = 558 s [i.e., Fig. 5 (A and B) without reinforcement

Fig. 1. Overview of NWN device and setup for supervised learning, PRL, and
the n-back task protocol. (A) Left: Optical micrograph showing physical silver
nanowires dropcast onto a substrate between 9 × 9 contact electrodes (nine
inputs and nine outputs; inset). Scale bar, 10 μm. Right: Schematic of simulated
NWN device with four input electrodes and four output electrodes, showing con-
ductance pathways from source to drain electrodes (green and red, respectively).
(B) Schematic of one epoch (training + testing) of an n-back task protocol. Training:
Summary of training protocol in which presentation of target pattern A is followed
by n-1 interference (nontarget) patterns. Schematic illustration of the NWN multi-
electrode device setup demonstrating the training protocol. During training, a
digital pattern (A) is cued to analog electrodes and fed into the device inputs;
outputs are recorded and compared with the target, after which drain currents
are adjusted, nudging target output currents closer toward a fixed current thresh-
old θ via supervised learning, and nontarget outputs away from θ. Testing:
Summary of testing protocol in which the target pattern A is presented after n
training patterns, and device outputs are compared with the target before the
next epoch starts. After testing: If the outputs do not match the target and PRL
is not applied, then the epoch fails; if this occurs with PRL, then θ is increased
for the target and decreased for the nontargets for the next epoch.

Loeffler et al., Sci. Adv. 9, eadg3289 (2023) 21 April 2023 3 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at N

ational Institute for M
aterials Science on A

pril 24, 2023



Fig. 2. Binary classification of 2 × 2 patterns with n = 2 (task 1). Top: (A) Experimental setup schematic of training a NWN for two unique 2 × 2 patterns. Green
electrodes represent active sources (inputs), purple electrodes are inactive, and red electrodes are active drains (outputs; D1 = drain 1, D2 = drain 2). Patterns can be
presented in two possible orders (order 1 or 2), for each of which the target pattern is different. Bottom left: Without reinforcement: (B) Experimental results. Drain
currents (solid blue and red lines, left axis) and classification accuracy (blue and red dots, right axis) versus time. Horizontal dashed lines represent training threshold
θ1 for drain 1 (blue) and θ2 for drain 2 (red). Inset shows close-up of drain current over two training and testing (green shade) epochs in Δt = 35 to 43 s. During the first
testing period (t = 35 to 38 s for no reinforcement and t = 64 to 65 s for reinforcement), order 1 is presented to the network. During the second testing period, order 2 is
presented to the network. (C) Simulation results. Inset shows close-up of drain current over two epochs in Δt = 48 to 60 s. Simulated network visualization snapshots
(nodes = nanowires and edges = junctions) showing junction conductance states (Gj, colorbar) during testing at t = 53.0 (drain 2 target) and t = 59.0 (drain 1 target). Active
and inactive source nodes are in green and purple, respectively, with active drain nodes in red and target drain labeled. Bottom right: Same as left but with reinforcement.
Insets show zoom-in over epochs in (B) Δt = 64 to 68 s and (C) Δt = 48 to 60 s.
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and Fig. 5 (C and D) with reinforcement] and then subtracting non-
reinforced paths from reinforced paths. What remains is a topolog-
ical reconfiguration map, highlighting the paths strengthened and
pruned by reinforcement. Pathway strengthening occurs in
regions closer to the target drain, while pruned pathways are in non-
target regions. See fig. S6 for intermediate connectivity maps.

Differences in pathway strengths are quantified by Gj histograms
in Fig. 5F, which are identical during early testing, while during late
testing, more junctions exhibit higher Gj values as a result of rein-
forcement. For these simulation results, a stronger filament decay
parameter (b = 2) was used to enhance the visual contrast of con-
ductance pathways in the functional connectivity maps in Fig. 5, but
this does not change the fundamental nature of pathway selectivity
that PRL produces. Other connectivity maps with varying b values
are presented in fig. S7. The full videos from which these snapshots
were taken are also available in the Supplementary Materials.

These findings highlight two unique memory capabilities in
NWNs. First, the supervised learning paradigm without PRL
reveals the importance of the history of junction changes to WM.
The second memory capability is that of memory consolidation
and occurs with the help of PRL. By manipulating the current
threshold θ, specific pathways are reinforced with substantially
greater current output, while other pathways are suppressed. This
is realized as long-term memory for the strengthened pathways.
Simulation results suggest that this activity is akin to memory con-
solidation via synaptic strengthening (1).

DISCUSSION
This study is the first to demonstrate a nontrivial cognitive task—
inspired by the WM n-back task—in a physical non–CMOS (com-
plementary metal-oxide semiconductor) substrate with native

Fig. 3. Binary classification of 3 × 3 patterns for varying n (n ≥ 2) with and without physical reinforcement (task 2). (A) Experimental schematic of task 2 n-back
variation for two unique 3 × 3 patterns, “x” (pattern A) and “+” (pattern B), respectively. In epoch 1, x is presented during training as the target, followed by two (if n = 3)
interference patterns +, and then x is presented again during testing. In epoch 2, the opposite order occurs. (B) Input pattern (as 1D vector) and corresponding input
nodes of graphical network representation used in simulation with two drain nodes (target in red, nontarget in purple). (C) Same as Fig. 2A but for five voltage inputs
(green) corresponding to 5-bit patterns x (left) and + (right). (D) Experimental (navy) and simulation (orange) results with (solid lines) and without (dashed lines) rein-
forcement. Chance accuracy (teal) is shown for comparison. Shaded areas represent SEM across epochs.

Loeffler et al., Sci. Adv. 9, eadg3289 (2023) 21 April 2023 5 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at N

ational Institute for M
aterials Science on A

pril 24, 2023



neuromorphic properties (i.e., not requiring implementation of
neuromorphic algorithms).

In a previous study, Neftci and colleagues (53) demonstrated a
simple cognitive task by emulating spiking neurons in a CMOS
system. Their method used an intermediate computational layer
in which silicon neurons are configured as soft winner-take-all
(WTA) networks (54). The WTA mechanism has been reported
in previous NWN studies (14, 15, 38, 41, 55, 56). Functional connec-
tivity maps in the current study, generated by the simulations, indi-
cate that the network uses more than one key pathway, in contrast to
previous findings. This is because of the low voltages used in this
study, which are well below the threshold needed to activate the
WTA path. This is to ensure that the network is maintained in an
intermediate conductance state, enabling control of conductance
paths via the electrodes. We previously visualized conductance
pathway formation in a similar multielectrode NWN device using
lock-in thermography (38). Despite the poor spatial resolution, we
were able to demonstrate the principle of reshaping conductance
paths in the network by dynamically changing the spatiotemporal
patterns of input signals delivered by the electrodes. In that study,
we used Ag@TiO2 nanowires as Ag–polyvinyl pyrrolidone (PVP)
nanowires, used in this study, are difficult to image using this tech-
nique due to their much lower resistance, making them more sus-
ceptible to damage by Joule heating.

The training methods introduced here for learning a cognitive
task have strong links to two unique neuroscientific learning theo-
ries. The first method, in which “nudging” was used, is similar to
supervised learning in the brain (29). This method is also similar
to the gradient nudging described in Æqprop (57) or other in
materio gradient descent methods such as described by Boon and
colleagues (58). Diaz-Alvarez et al. (41) previously demonstrated as-
sociative routing in an Ag-PVP NWN using the same multielec-
trode device configuration as used in this study. They effectively
trained pathways by opening and closing selected electrodes to
prompt the network to use specific pathways and associate them
with specific spatiotemporal patterns delivered by the electrodes.
However, they found that this technique was unable to maintain re-
liable pathway selectivity, particularly as more paths became estab-
lished, which limited the ability to train multiple different patterns.
By implementing selective feedback (PRL), our study demonstrates
how the strengthening and pruning mechanism underlying PRL
can control specific unique pathways to enable training of multiple
distinct patterns and long-term memory of a target pattern.

When supervised learning is implemented in NWNs without
any reinforcement, drain electrode voltages are altered and
nudged closer to the target. However, because of the finite decay
rate of NWN junctions (59), coupled with a fixed current threshold
(θ), the conductance pathways are only remembered temporarily,
reflecting the network’s WM capacity. In humans, WM is an

Fig. 4. WMmultipattern n-back task (task 3). (A) Experimental schematic of task 3 n-back variation for seven unique 3 × 3 patterns. Pattern A is always selected as the
target; however, its location is semirandomly varied, to change n. The order of the interference patterns (B to G) is random. (B) Same as Fig. 3C but for three voltage
sources (green) corresponding to target pattern (A shown) and seven output electrodes (one target drain, red). (C) Mean recall accuracy in experiment (navy) and sim-
ulation (orange), with and without reinforcement, for varying n (sorted by n). Shaded regions represent SEM. Chance accuracy (teal) represents a one-in-seven chance of
correctly classifying the target pattern over the six alternative patterns. (D) Mean accuracy sorted by epoch and corresponding θ threshold values;N is the number of trials.
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example of information retention and consistent manipulation via
synaptic modifications until the information is no longer needed
(48), at which point it decays in seconds up to minutes or is
encoded (60).

The cognitive task used in this study, a sequence memory task
inspired by the n-back task, is extensively used in cognitive psychol-
ogy for testing WM in humans (42–44, 61). Sequence memory and
n-back memory tasks have also been applied to recurrent neural
networks with bio-inspired topology (62). Well-known studies in
humans originally suggested a capacity to store 7 ± 2 items in

WM (63), although subsequent studies estimate it at closer to
three to five “chunks” of memory (64, 65). Here, the n-back task
was adapted into subtasks that could be implemented in NWNs.
Task 3, the most similar to the original n-back task (61), showed
that NWNs can store up to seven items in memory (and potentially
more) at substantially higher than chance levels without reinforce-
ment training and near-perfect accuracy with reinforcement train-
ing. One theory ofWM at the synaptic level describes how an item is
maintained in WM via increased residual calcium levels at presyn-
aptic terminals of the neurons that code for that item (66). Since

Fig. 5. Simulated NWN connectivity snapshots duringmemory recall. (A and B) Network connectivity maps visualizing junction conductance (Gj) snapshots at early (t
= 14 s) and middle (t = 558 s) testing periods of the WM n-back task (with n = 3), respectively, without reinforcement. Active and inactive input electrodes are highlighted
in green and purple, respectively, with active drain electrodes in red and target drain indicated. (C and D) Same as (A) and (B) but with reinforcement. (E) Topological
reconfiguration map highlighting the junction conductance change ΔGj between reinforced and nonreinforced paths. Values are calculated by comparing connectivity
maps as follows: (d − c) − (b − a). (F) Gj histograms corresponding to (A) and (C) (top) and (B) and (D) (bottom). For clarity, Gj is thresholded at 2 × 10−5 S.
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removal of residual calcium is a relatively slow process (around 1 s
in humans), memories can be held over this time without the need
for further spiking (67). The depletion of residual calcium is con-
ceptually similar to atomic filament decay in NWNs (6).

The second method of learning implemented in this study, PRL,
is similar to reinforcement in the brain, which is thought to occur, at
least in part, via strengthening of synaptic dopamine channels
through Hebbian plasticity, in response to a positive (or negative)
outcome (35, 68). Contrastingly, and particularly during early de-
velopment, when a synaptic pathway is unused, unwanted, or pun-
ished, it is pruned (69). Pruning occurs via a weight-dependent
synaptic modification process called neuronal regulation (70).
This study showed both reinforcement of desired pathways via
PRL, as well as pruning of penalized pathways in NWNs.

A clear distinction must be made between non-PRL results and
PRL results in the n-back task. Without PRL, task performance re-
flects the network’s WM capacity, i.e., its ability to temporarily
recall information pathways while establishing new ones. When
PRL is introduced, however, memory is consolidated. Memory con-
solidation in the brain involves the process of encoding information
in a long-term manner via strengthening of synaptic pathways and
brain regions that activate in response to that information (1, 71).
These long-term modifications can last from hours up to an entire
lifetime (1, 60).

In NWNs, PRL allows for strengthening specific pathways over
time (and weakening of others), based on a desired output. Once
pathways are consistently and repeatedly activated, they take
notably longer to decay. In experiment, 3-hour rest was allocated
between trials for the physical network. However, this was likely
not long enough for conductance pathways to fully decay, particu-
larly once PRL was introduced. NWNs have previously been shown
to retain information even 24 hours after dynamic pathway tuning
(38). Consequently, after reinforcement or repeated prolonged acti-
vation of specific pathways, NWNs’ memory for those pathways is
also lengthened and consolidated. In contrast, memristive junctions
and pathways in simulated NWNs were completely reset between
each trial and displayed a lowerWM capacity. These results are con-
sistent with findings by Benna and Fusi (39), which suggest that syn-
aptic plasticity depends on the history of synaptic modifications,
referred to as synaptic metaplasticity. In physical NWNs, memory
of previous junction modifications is carried on between epochs
and trials more effectively than in simulation, increasing the WM
capacity of the network.

Similar behavior was previously reported in Ag-PVP NWNs by
Milano et al. (72), who found that the structural topology of NWNs
evolves depending on synaptic history. In that study, however, re-
routing of conductance pathways was demonstrated by applying
sufficiently high current densities to rupture physical connections
between wires. In contrast, the present study uses much lower volt-
ages, which maintains persistent activity in the network. This is
identified with WM (1). Synaptic metaplasticity as described here
is a result of external feedback signals into the network rather
than physical restructuring.

In task 3, the network was charged with only retaining pathway
information for one target pattern. While the NWNs still had to
contend with six interference patterns and therefore provided a
comprehensive insight into the WM capabilities of the networks,
the capacity for multiple classes to be held in memory and recalled
was not measured. Consequently, NWNs demonstrate stimulus-

specific manipulation, while WM in humans also involves
domain-specific manipulation (73). The latter of these would
require memory across multiple classes of stimuli, not just a
single target pattern. To properly mimic large-scale parallel infor-
mation manipulation in the brain, future studies into the network’s
capacity to remember and recall multiple pathways associated with
different input patterns are warranted. However, it may be that mul-
tiple, highly modular NWNs will be required to be linked up in par-
allel to demonstrate such information processing abilities (21).
While NWNs are highly scalable as they are straightforwardly syn-
thesized by bottom-up self-assembly, device scalability is limited by
fabrication of the multielectrode system. Previously, other NWN
devices have been fabricated in CMOS multielectrode arrays
(MEAs) for implementing reservoir computing. These devices
have not shown marked performance improvements when scaling
from a 16-electrode MEA (10, 18, 23) to a 64-electrode MEA (74).
The present study implements cognitive tasks rather than reservoir
computing, and therefore an increased number of electrodes would
allow demonstration of the n-back WM task with more complex
patterns.

Neuromorphic systems that can learn, remember, and adapt to
external time-varying stimuli would represent a breakthrough plat-
form for neuro-inspired computing (75). The present study demon-
strates the potential for NWNs to achieve this. The ability to process
dynamically changing information is key in many real world appli-
cations, such as robotics and sensor edge devices, where there is a
need to make on-the-fly decisions in a nondeterministic environ-
ment (76) .

In conclusion, by applying supervised and reinforcement learn-
ing strategies similar to those operating in the brain, we have dem-
onstratedWM and memory consolidation in NWNs. These higher-
order cognitive functions were achieved by implementing a non-
trivial cognitive task routinely applied to human subjects. Results
reveal that neuromorphic learning paradigms implemented in
NWNs leverage similar mechanisms to the brain, namely, synaptic
metaplasticity and synaptic strengthening and pruning, to optimize
WM and memory consolidation.

METHODS
Experimental setup
Silver NWNs were synthesized by following the well-known Polyol
method, as described previously (14), which produces an ethanol
solution of Ag nanowires coated with the polymer PVP. Nanowires
were directly deposited by drop-casting on a glass substrate to create
dense and homogeneous networks of interconnected Ag-PVP
nanowires, resulting from the random dispersion of nanowires
once the ethanol droplet evaporates. A multielectrode Ag-PVP
NWN device (Fig. 1A) was constructed by depositing two regular
arrays of rectangular gold electrodes facing each other at a distance
of 3 mm. Electrodes were 200 μm wide and 600 μm apart from each
other. The electrodes were deposited onto the glass substrate by
magnetron sputtering before depositing the nanowires. Depending
on the task, a selection of electrodes out of the two arrays were con-
nected to serve, respectively, as source or drain electrodes. The elec-
tronic setup is similar to the one described in Diaz-Alvarez et al.
(41), comprising a digitally controlled switch box connected to
the electrodes in use for the given task, which sequentially opens
and closes the respective electrodes that form the patterns used in
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all the tasks (cf. Fig. 1B). Source voltage was delivered and con-
trolled with a National Instruments data aqcuisition (NI-DAQ)
card, and drain current was controlled using an array of in-house
biased operational amplifiers (OPAs), serving as current-voltage
converters with amplification of 107 V/A. Voltage signal from the
OPA array was sent to a digital acquisition card (NI-DAQ). In all
tasks and experiments, the rate of acquisition was the same (1 kHz).
This rate was further down-sampled for storage, analysis, and pre-
sentation purposes. Software to control voltage sources, digital
switches, the acquisition cards, and the different algorithms for
training/testing was developed using Python.

Full characterization of Ag-PVP NWNs, including the mecha-
nisms of activation and decay are reported in our previous studies
(9, 14, 38, 41), where we found that memory of previous conduc-
tance pathways begins to fade at 35 to 90 s, although networks
can take much longer to decay (up to hours) due to many junctions
in different states. Using the same multiterminal (nine input and
nine output electrode) device configuration, Diaz-Alvarez et al.
(41) demonstrated the ability to dynamically control conductance
pathways in Ag-PVP NWNs by maintaining low input voltage
levels, effectively keeping junctions in intermediate “metastable”
states between low and high conductance. This was similarly later
demonstrated by Li et al. (38) using the same electrode configura-
tion but with Ag@TiO2 NWNs. Consequently, the present study
adopts a similar protocol, using low voltages during training and
testing (0.1 to 0.2 V), and input samples are presented for relatively
short durations (within the ∼1-min memory window). Networks
were also rested for 3 hours between trials to allow decay of conduc-
tance pathways. Further characterization is shown in figure 3 and
figure S3 of the study of Diaz-Alvarez et al. (14), although they
used double-probe electrodes rather than a multiterminal device.

Two unique network samples were prepared and assessed for the
different tasks, each with different input patterns and order of
sample presentation. While results do vary from device to device
(see source data file S1), they tend to follow similar trends within
a range [see also Diaz-Alvarez et al. (14)] (fig. S1).

Simulation setup
Ag-PVP NWNs were modeled as described in previous studies (9,
12, 21). All simulations were conducted using Python. Briefly,
nanowires were modeled as one-dimensional (1D) objects of
length drawn from a gamma distribution (mean wire length =
10 μm), placed randomly within a 2D plane of fixed size (75 μm
by 75 μm). The vertical and horizontal positions of wires were gen-
erated from a uniform distribution on 2π. In this study, NWN sim-
ulations used 698 nanowires (nodes) and 2582 junctions (edges),
giving an average degree of 7.40. While the number of modeled
nanowires is smaller than in the experimental network, NWN
memory capacity is determined by the number of junctions,
which was chosen to achieve simulation results that most closely
matched experimental measurements. Previous NWN simulation
studies (12, 15, 21) using the same model demonstrate the influence
of topology and density on network functionality.

Nanowire-nanowire cross-points were modeled as ideal, electri-
cally insulating, ionically conducting junctions, with threshold-
driven bipolar memristive switching (14, 17, 59, 77, 78), modulated
by electron tunnelling transport (9, 15). Junction conductance, Gj =
Gj(λ), depends on a state variable λ(t) that parametrizes the con-
ducting nanofilament responsible for memristive switching due to

electrochemical metallization (6). The evolution of λ(t) is described
by a polarity-dependent voltage threshold model (9, 15, 59, 78, 79)
as shown in Eq. 1

dλ
dt
¼

ðjVðtÞj � VsetÞ sgn½VðtÞ�; jVðtÞj. Vset
0; Vreset ,jVðtÞj, Vset

bðjVðtÞj � VresetÞ sgn½λðtÞ�; jVðtÞj, Vreset

8
<

:
ð1Þ

where V is the voltage across a junction, and Vset and Vreset are the
junction on and off thresholds, respectively. A positive constant pa-
rameter b was also used to quantify the filament decay rate due to
stochastic thermodynamic breakdown (80–82). This parameter was
varied (see fig. S3) to explore its effect on WM. For simulation
results shown in this paper, b = 0.5 was used, unless otherwise
indicated.

Experimental validation of the model used to simulate these net-
works can be found in Hochstetter et al. (9) (figs. S19 and S20). The
choice of model parameters used in this study is based on an exten-
sive parameter sensitivity analysis by Hochstetter and colleagues (9)
in their Supplementary Notes.

The simulation duration and time steps used in all tasks were
t = 2 s (for each sample) and Δt = 0.01 s, respectively. Input
voltage amplitude was 0.3 V for training and 0.1 V for testing.
For simulation results, the same network was used 10 times, each
with different input patterns and order of sample presentation.
Network junction states were completely reset between trials in
simulation.

Implementation of supervised learning and PRL in
classification and WM tasks
Figure 6 summarizes the three variations of n-back task presented in
this study. For tasks 1 and 2, the target pattern is randomly switched
between A and B in each epoch, and for task 3, the position of the
target A is semirandomly changed at each training-testing epoch.

Algorithm 1 describes the methodology for one training-testing
epoch (for tasks 1 and 2), while Table 1 lists and describes all the
parameters. A gradient descent–like algorithm (see Eq. 2) was
used during training to implement supervised learning and
change the relative voltage between the input and output electrodes,
by increasing or decreasing the output voltage (Vo) of the drain elec-
trodes. Changes in Vo are described by the following equation pair
on lines 17 and 18 of Algorithm 1, respectively

Δ ¼ βðytarget � dtargetÞ ð2Þ

Vo ¼ Vo þ Δ ð3Þ

where ytarget is the target drain output (current), dtarget is the set
target current, and β is the learning rate. Both ytarget and dtarget
are normalized and therefore dimensionless, meaning that Δ is
also dimensionless. By changing Vo, corresponding output drain
currents were nudged toward a target current threshold (θ). Input
electrodes remained unchanged from Vi. Experimentally, training
stops once ytarget reaches θ or the training time per sample ends.
In the latter case, the sample was stopped even if the current had
not reached the threshold θ, and the next sample was presented.
The maximum training time was set to t = 15 s. If θ was reached
before 15 s (which typically occurred after 1 to 3 s), the sample
was considered trained, training was halted, and the next sample
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was presented. In simulation, each training samplewas shown for all
t = 2 s (200 time steps). If θ was reached before 2 s,Vi and allVo were
reset to zero for the rest of the sample duration.

During testing, all the output electrodes were opened and reset to
0 V. An input that matches the same pattern as sample 1 (i.e., n
samples before testing) was then delivered to the network. The
input voltage was ramped up from 0 V until a current threshold
(θtest) is reached at the drain electrodes or until the testing time (typ-
ically t = 7 s) ends. The voltage does not exceed xtest. This procedure
is used only in the experimental setup, as it is difficult to know a
priori how much voltage is required for drain current to be measur-
able. In simulation, however, drain currents can be measured for
any arbitrary voltage, so samples were delivered at a set voltage
(Vi = xtest), which is lower than training.

Four possible scenarios can occur as a result of supervised
learning

1) If ytarget < dtarget, then Δ < 0. Therefore, based on Eq. 3, Vo is
reduced for the next time step. This, in turn, means that the voltage
difference between the input electrodes (Vi) and Votarget decreases,
and more current flows to the target drain than the other drain
electrodes.

2) If ytarget ≥ dtarget, then θ is reached, and the present sample is
trained. Voltages are reset to 0.

3) If ynontarget < dtarget, the current outputs from the nontarget
drains are likely lower than the outputs from the target drains.

4) If ynontarget ≥ dtarget, in this scenario, Δ ≥ 0, meaning that
Vonontarget increases, and less current flows to the nontarget drains.

Once the test sample ended, the current of each output channel
during testing timewas averaged. The channel for which the average
current was greater is considered the winner of the epoch (i.e.,

argmax is applied). If the winning output electrode matches the
target that was trained for the testing electrode pattern (i.e., the cor-
responding drain from sample 1), then it is considered a successful
epoch (Acc = 1), and the current threshold level (θ) stays the same.
Otherwise, the epoch is considered unsuccessful (Acc = 0), and θ is
increased for the target drain (reinforcement), while the threshold
of the nontarget drain is decreased (penalty).
Task 1
A simple binary classification task was implemented (using four
inputs and two outputs) to demonstrate supervised learning and
PRL in NWNs. Each of two nonoverlapping 2 by 2 sample grid pat-
terns (A and B) was associated with a corresponding grounded
output electrode (drain 1 or 2) with a one-to-one correspondence.
Each pattern was input as a voltage bias (Vi) applied to the selected
source electrodes for t = 2 s, while the other input electrodes were
electromechanically closed. The target output electrode was
opened, while the other output electrode was electromechanically
closed. After n = 2 cycles of training, a testing sequence was per-
formed, in which the network’s efficacy in reproducing the
trained pattern that presented n-steps previously was measured
and analyzed. Training and testing for the selected input-output
patterns were performed in sequence over multiple training-
testing epochs.

In experiment, parameters used for task 1 were as follows: xtrain =
0.2 V; for xtest, voltage was ramped up from 0 V until a current was

Fig. 6. Summary of n-back task protocols. Top (task 1): Binary classification of
two 2 × 2 patterns (A and B; two nonzero inputs each) and n = 2. Middle (task
2): Binary classification of 3 × 3 patterns (five nonzero inputs) and varying n.
Bottom (task 3): WM task using multiple randomly selected, nonrepeated 3 × 3
patterns (A to G; example sequence shown) and varying n. Characters in red rep-
resent target pattern tested in each task.

Table 1. Experimental and simulation parameters and variables.

Parameter Description

y Normalized current (I ) outputs of the drains, vector [ytarget,
ynontarget]

d Normalized current (I ) that target drain is trained to
reach (ytarget)

Vo Output (drain) voltages (1 × 2 vector)

Io Nonnormalized output (drain) currents (1 × 2 vector)

Vi Input voltage (scalar)

β Learning rate

λ A state variable that parametrizes the conducting filament
responsible for memristive switching

∆ Amount of adjustment required to Vo at each time step

b Junction filament decay parameter (lower = slower decay)

Acc Classification accuracy

Accθ Accuracy threshold for reinforcement

θ Reinforcement learning threshold, vector [θtarget,θnontarget].
Once the target output current (ytarget) reaches this
threshold, it is considered trained for that sample.

θtest Current threshold for testing used only in experimental
setup. Once the current reaches this threshold, testing

is halted.

incV al Increase θtarget by incV al when Acc < Accθ

decV al Decrease θnontarget by decV al when Acc < Accθ

xtrain Input voltage during training

xtest Input voltage during testing, with xtest ≪ xtrain, so that new
pathways are not formed during testing.
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measurable in the target drain; θ= 6 × 10−8 A; θtest= 1 × 10−7 A;
training time: t = 15 s or until θ was reached; testing time: t = 7 s
or until θtest was reached, with 7-s rest between each training sample
and 1-s rest between training and testing. In simulation, parameters
used were as follows: xtrain = 0.3 V; xtest = 0.1 V; θ= 5 × 10−6 A; train-
ing time: t = 2 s; testing time: t = 2 s, with no rest between each
training sample and no rest between training and testing.
Task 2
The input pattern was expanded to 3 × 3 (nine inputs, two outputs),
and more n values were added to the testing procedure: n = 2,3,4,5,
and 6. Training and testing were implemented in the same way as in
Algorithm 1, using more complex input patterns: “x” and “+” (5 bits
each). One training-testing cycle made up an epoch. Each trial
lasted 40 epochs of one n value. For example, in trial 1, n = 2, in
trial 2, n = 3, and so on. A total of 50 trials were run, 10 for each
n value, each with a different random seed. Figure 6 shows a sche-
matic of the setup and methodology. The two classes of 3 × 3 pat-
terns (+ and x) correspond to five nonzero inputs. If sample 1 is +,
subsequent training samples were all x and vice versa. This way,
during testing, conduction pathways formed by sample 1 are not

stimulated for n-1 samples beforehand. Thus, the network relies
on memory of pathways activated by the target input.

In experiment, parameters used for task 2 were as follows: xtrain =
0.1 V; for xtest, voltage was ramped up from 0 V until a current was
measurable in the target drain; θ= 2 × 10−8 A; θtest= 1 × 10−7 A;
training time: t = 15 s or until θ was reached; testing time: t = 6 s
or until θtest was reached, with 5-s rest between each training sample
and 5-s rest between training and testing. In simulation, parameters
used were as follows: xtrain = 0.3 V; xtest = 0.1 V; θ= 5 × 10−6 A; train-
ing time: t = 2 s; testing time: t = 2 s, with no rest between each
training sample and no rest between training and testing.
Task 3
A multiple pattern n-back task was implemented to test the WM
capacity of NWNs while minimizing the influence of previous
trials. This was operationalized by testing how accurately the
NWN recalls a test sample from n-steps ago, without being

Algorithm 1: Binary classification procedure

1: n ⇐ 2; d ⇐ 1
2: xtrain ⇐ 0.3 V; xtest ⇐ 0.1 V
3: incV al ⇐ θ/3; decV al ⇐ θ/6
4: θ⇐ [0.5, 0.5]
5: Vo ⇐ [0, 0]
6: for s in range(length(samples)) do
7: if TRAINING then
8: target ⇐ random (1, 2)▷ Choose a class (1 or 2) at random and set as
target
9: Vi ⇐ xtrain
10: Close Vonontarget
11: RUN SIMULATION
12: y⇐ Normalize(Io)
13: if ytarget > θtarget then ▷ If θ is reached, reset voltages to 0
14: Vo ⇐ [0, 0]
15: Vi ⇐ 0
16: else
17: ∆ ⇐ β(ytarget − dtarget) ▷ Supervised learning
18: Vo ⇐ Vo + ∆▷ External feedback
19: end if
20: else if TESTING then
21: Vi⇐ xtest
22: Vo ⇐ [0, 0]
23: target ⇐ samples[s − n] ▷ Target pattern is same as pattern n
training samples prior.
24: Open Vonontarget
25: RUN SIMULATION
26: y ⇐ Normalize(Io)
27: if mean(ytarget) > mean(ynontarget) then
28: Acc ⇐ 1
29: else
30: Acc ⇐ 0
31: end if
32: if Acc < Accθ then ▷ Reinforcement (PRL)
33: θtarget ⇐ θtarget + incV al
34: θnontarget ⇐ θnontarget − decV al
35: end if
36: end if
37: end for

Algorithm 2: Multipattern n-back procedure

1: patterns ⇐ [A, B, C, D, E, F, G]
2: d ⇐ 1
3: xtrain ⇐ 0.3 V; xtest ⇐ 0.1 V
4: incV al ⇐ θ/6; decV al ⇐ θ/12
5: θ ⇐ [0.5, 0.5]
6: Vo ⇐ [0, 0]
7: nV als ⇐ sample(length(patterns), replace = False) ▷ Randomly sample
positions at which target pattern (A) will be located. Repeat around 28
times for a total of 200 positions.
8: for s in range(length(samples)) do
9: if TRAINING then
10: target ⇐ A
11: for pattern in patterns do
12: n⇐ nV alss
13: Vi ⇐ xtrain
14: Close Vonontargets
15: RUN SIMULATION
16: y⇐ Normalize(Io)
17: if ytarget > θtarget then ▷ If θ is reached, reset voltages to 0
18: Vo ⇐ [0, 0]
19: Vi ⇐ 0
20: else
21: ∆ ⇐ β(ytarget − dtarget) ▷ Supervised learning
22: Vo ⇐ Vo + ∆▷ External feedback
23: end if
24: end for
25: else if TESTING then
26: Vi ⇐ xtest
27: Vo ⇐ [0, 0]
28: target ⇐ A
29: Open Vonontargets
30: RUN SIMULATION
31: y ⇐ Normalize(Io)
32: if mean(ytarget) > mean(ynontargets) then
33: Acc ⇐ 1
34: else
35: Acc ⇐ 0
36: end if
37: if Acc < Accθ then ▷ Reinforcement (PRL)
38: θtarget ⇐ θtarget + incV al
39: θnontargets ⇐ θnontargets − decV al
40: end if
41: end if
42: end for

Loeffler et al., Sci. Adv. 9, eadg3289 (2023) 21 April 2023 11 of 14

SC I ENCE ADVANCES | R E S EARCH ART I C L E
D

ow
nloaded from

 https://w
w

w
.science.org at N

ational Institute for M
aterials Science on A

pril 24, 2023



reminded of that sample within the same epoch. To overcome the
potential extra training of pathways during a single epoch due to
repeating patterns (e.g., “A” repeated four times in the n-back = 5
pattern “ABBBBA” shown in Fig. 6), random, distinct patterns
were generated.

Here, seven random 3 × 3 patterns were generated (named pat-
terns A, B, C,…G). The number of pixels per pattern was limited to
three, so that each pattern could have 1, 2, or 3 pixels randomly se-
lected as inputs from the nine available pixels. The supervised learn-
ing and PRL algorithm used for one epoch (training + testing) is
presented in Algorithm 2.

Pattern A was selected as the target for each testing epoch in the
experiment. To vary n, the position at which pattern Awas present-
ed during training was varied, so that for testing, n-steps back varies.
For example, if n = 3, pattern A is presented as the fifth training
sample. In this case, the other six samples (four presented before
A and two after) are randomly selected from patterns B to G
without replacement. This meant that each training epoch included
additional nonrepeated samples that precede the n-back sequence.
In the example sequence shown in Fig. 6, the training order is [B, E,
F, G, A, C, and D], which is followed by testing only for [A].

One training-testing cycle made up an epoch. Each trial lasted
200 epochs. The location of pattern A was semirandomized, so
that each n was sampled around 28 times, for a total of 200
epochs. In other words, pattern Awas presented at training position
1, 28 times over 200 epochs, at position 2, 28 times, and so on. A
total of 10 trials were run, each with a different random seed.

In experiment, parameters used for task 3 were as follows: xtrain =
0.1 V; for xtest, voltage was ramped up from 0 V until a current was
measurable in the target drain; θ= 6 × 10−8 A; θtest= 1 × 10−7 A;
training time: t = 15 s or until θ was reached; testing time: t = 6 s
or until θtest was reached, with 5-s rest between each training sample
and 5-s rest between training and testing. In simulation, parameters
used were as follows: xtrain = 0.3 V; xtest = 0.1 V; θ= 5 × 10−6 A; train-
ing time: t = 2 s; testing time: t = 2 s, with no rest between each
training sample and no rest between training and testing.
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