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We analyze the Curie temperatures of rare-earth transition metal binary alloys using machine learning. In order to
select important descriptors and descriptor groups, we introduce a newly developed subgroup relevance analysis and
adopt hierarchical clustering in the representation. We execute exhaustive search and demonstrate that our approach
results in the successful selection of important descriptors and descriptor groups. It helps us to choose the combination of
descriptors and to understand the meaning of the selected combination of descriptors.

Magnets are now widely used and play an important role in
energy savings.1,2) One of the most important applications of
magnets is electric motors, whose performance significantly
depends on the performance of magnets. Nd–Fe–B based
rare-earth magnets are the strongest among the existing
permanent magnets, and are almost the only type of
permanent magnets that meets the stringent performance
requirements of the recent electric motors. However one of
the problems with Nd–Fe–B magnets is the relatively low
Curie temperature compared to the operation temperatures of
the motors. Therefore, many researchers have carried out
studies to overcome this drawback, including the exploration
of new magnets.

The Curie temperature (TC) is one of the most important
physical quantities of magnets, but unfortunately, it is one of
the most difficult physical quantities to predict correctly.
There are several theory-driven methods for evaluating the
TC of magnetic materials.3) One of the basic approaches is to
solve an (extended) Hubbard model by using various low-
energy solvers. In principle, this method is expected to be
accurate. However Anisimov et al. showed that the results
are sensitive to the effective parameters and details of the low
energy solver.4–6) Therefore, this approach is still at the level
of testing the formalism for simple systems like pure
transition-metal magnets.

Atomistic spin model is the most common choice for
practical application to more complex systems.3) The spin
model is constructed from the magnetic moment at each
atomic site and the intersite magnetic exchange-couplings
based on the assumption of fixed magnitude of spin
moments. The parameters are evaluated using the first-
principles calculations.3) This method can be applied to rare-
earth magnets. Usually, the model is simplified further, and
is restricted to the TM-3d and RE-4f spins. Then, TCs is
evaluated, usually in the mean field approximation. The mean
field approximation, however, usually overestimates TCs.
Thus, there exist many sources of error in the TC evaluation
using the atomistic spin model. The development of
theoretical methods for the estimation of the TC is still
underway.

In contrast to the deductive approaches described so far,
there is now a movement toward utilizing inductive
approaches, i.e., data-driven methods for estimating TC, and
there have been many reports of successful prediction of the
physical quantities using such methods.7–12) The data-driven
approach accumulates data, prepares descriptors, makes a
model with the descriptors, and finally predicts the values of
physical quantities of new materials. One of the key points to
be considered for successful prediction is the choice of
descriptors. A typical example of descriptor selection can be
seen in the work by Ghiringhelli et al., where a regression
model is used to predict the energy difference between zinc
blende or wurtzite and rocksalt structures.13) They used a
linear regression model, and first prepared basic descriptors.
However, a linear regression model with only the basic
descriptors has low description power. Then, they performed
various operations on the basic descriptors and produced a
number of nonlinear combinations among the basic descrip-
tors. This resulted in an increase in the prediction power.
They shrank the number of descriptors using LASSO and
finally employed exhaustive search to find the best linear
regression model. Their work shows that the combination of
descriptors is important for increasing the accuracy of the
regression model.

Usually, we select the best regression model and discard
all the others (performance-optimized model). However we
know that there exist many regression models, where the
combination of the descriptors is different from the one that
has the best score, but the score of which is as good as the
best one indicated by the exhaustive search method. (The best
score means, for example, the largest R2 value in the
regression model.) There exists another strategy where we
choose the regression model the score of which is not the
best, but is high. For example, we can choose low cost
descriptors, where “low cost” means easy or literally low cost
to evaluate through experiments or calculations. This model
is usually referred to an operation-optimized model. Okada
et al. devoted considerable effort to the latter problem. They
showed the scores of regression models as the density of
states to understand the overall structure in one way, and
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plotted the best scores as a function of the combinations
in another way, such as the indicator diagram, to select
the best combinations depending on the purpose of the
analysis.14–16)

Yet, it is not easy to understand the relationship and
structures among descriptors from a huge list of scores and
descriptors. Informatics treatment usually ignore the impor-
tance of the meaning of the descriptors, though they are
physical parameters that physicists regard as important.
However we hope that we can extract more information from
the huge data. In the present work, we introduce a well-
defined subgroup concept to clarify the relationship among
descriptors. Our method can also elucidate how to choose
combination of descriptors systematically as well as how to
understand the meaning of descriptors.

Our target variable is the experimental TC of the rare-earth
transition-metal binary stoichiometry alloys considered in
this study.17) We select the descriptors from the element
dependent categories (R for rare-earth elements and T for
transition metal elements), and utilize the knowledge of the
conventional theory-driven method. The key parameters of
the effective theory-driven models are related to the proper-
ties of the constituent elements and=or structural parameters.
For example, the orbital energy level increases (becomes
deeper) as the atomic number Z increases. The electron
interaction becomes stronger as the atomic orbital becomes
more localized. The magnetic exchange-couplings are
associated with the strength of the electron interaction and
transfer integrals. The coupling strength between TM-3d and
RE-4f (through RE-5d) is crucial for discussing the RE
dependence of magnetism. This strength is proportional to
the 3d-4f effective exchange coupling and the 4f total spin
projected onto the 4f total angular moment J4f. The latter
quantity is given by J4f ð1 � gJÞ, with gJ being the Landé
g-factor. We also add the descriptors from the structure-
related category (S) to describe the ratio of the elements as
well as the real volume or spatial dependent simple variables
to distinguish, e.g., Th2Zn17 and Th2Ni17 polytypes. We list
the descriptors in Table I, and give their detailed explanations
in the supporting information.18)

As a regression model, we employ kernel ridge regression
with the radial basis function kernel. Kernel ridge regression
can include the non-linear effects of the descriptors and has
much stronger power to fit the target functions with the
descriptors, though there exist a demerit of taking much more
time to fit=predict the regression models than the linear
regression does. We used Python scripts with mpi4py, scipy
and scikit-learn.19–21) Our scores in the regression models are
the R2 values, which we evaluate in the leave-one-out cross
validation.

First, we analyze the descriptors. We take Pearson’s
correlation coefficient between the descriptors. For the T
category, the absolute values of Pearson’s correlation
coefficient among the three descriptors, ZT, rT, and S3d, are
the same, namely 1, which means that their contributions are
the same in the regression model after the normalization
procedure. Therefore, the number of independent descriptors
is reduced from 27 to 25. Then, we perform exhaustive
search for 225 � 1 ¼ 3:3 � 107 regression models where the
combinations of descriptors are different, and evaluate their
accuracy values (scores).

Usually, we evaluate the score of the regression model;
however, we want to evaluate the importance of the
descriptors. Therefore, we change the viewpoint from the
regression model to the descriptor in order to discuss the
importance of the latter. We use relevance analysis,22,23)

which roughly corresponds to the linear response theory
with respect to the descriptors. (We explain the scores and
relevance analysis in the supporting information.18)) It
originally utilizes the change in values when we remove=
add a descriptor. The former corresponds to the leave-one-
out experiment, while the latter corresponds to the add-one-in
experiment. The descriptor is strongly or weakly relevant
when its accuracy score changes meaningfully in the leave-
one-out or the add-one-in experiment, respectively.

Our first relevance analysis is based on strong relevance.
We found that only the descriptor, CR, is strongly relevant.
We can verify the importance of CR when we plot CR vs TC.
Almost all the points are placed in the bottom-left side of the
right panel of Fig. 1. Thus, it is clear that CR has a
considerable influence on the TC. It should be noted that we

Table I. Transition metal, rare-earth, and structural descriptors. See also
the supporting information.18)

Category Descriptors

Atomic properties
of transition metals (T)

ZT, rT, rcvT , IPT, �T, S3d, L3d, J3d

Atomic properties
of rare-earth metals (R)

ZR, rR, rcvR , IPR, �R, S4f, L4f, J4f,
gJ, J4fgJ, J4fð1 � gJÞ

Structural information (S)
CT, CR, dT�T, dT�R, dR�R, NT�R,
NR�R, NR�T

all

leave-CR-out

Fig. 1. (Color online) Top panel: The blue line shows the best score for
each number of descriptors. The orange dotted line shows the score when CR

is removed. Bottom panel: CR (Å−3) vs TC (°C).
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will not able to find such a relationship if we simply execute
the regressions.

We notice that relevance analysis can be done not only for
a descriptor, but also for a subgroup of descriptors. We
define groups and subgroups in this paragraph. The second
relevance analysis is based on weak relevance, where, in the
original prescription, we add another descriptor to the set of
descriptors, which we must define. We define the groups and
subgroups here, and make use of them in the relevance
analysis. We utilize hierarchal clustering analysis, where the
distance between descriptors is one minus the absolute values
of Pearson’s correlation coefficient. We can define the groups
or subgroups of descriptors that are clustered based on the
criteria of them being within distance, d, of each other. For
example, we can define four groups at d ¼ 0:5. Two of them
have the same descriptors as those of the T and R categories,
while the other two have that of the original S category. (We
call the original cluster as category and the cluster by the
hierarchical analysis as group.) The dTR constitutes a group,
while the other S category descriptors constitute the other. It
is not surprising that the grouping at d ¼ 0:5 is almost the
same as the categories defined a priori as T, R, and S when
we remember the definition of the descriptors of the
materials. Here, we successfully defined the groups and
subgroups, where the groups are almost the same as the
original category but are clustered from the data themselves.
(We redefine the group S as a result of this clustering. The
group S that does not include dTR is different from the
category S.)

We can make further advances in this grouping. We notice
that the definition of the value of d is unnecessary, but we

only have to define the vertical line of the decomposition tree
to define the subgroups because the child nodes below the
vertical line is the same. (See also Fig. 2. The vertical axis
corresponds to d.) Thus, we are able to define many
subgroups of the descriptors as sets of the child nodes of
the dendrogram.

We apply the relevance analysis not to a descriptor but to a
subgroup=group. We call this method subgroup relevance
analysis. We plotted the result in Fig. 2. The horizontal score
is evaluated in the leave-one-out experiment and is related to
the strong relevance, while the vertical scores are evaluated
in the add-one-in experiment and is related to the weak
relevance. Note that the score of a subgroup belonging to a
group is evaluated under the condition that we must use at
least one descriptor in the subgroup, and any descriptors
belonging to the other groups can be added in the weak
relevance analysis.

In Fig. 2, the weak relevance values, or add-one-in values,
are written as vertical values. The subgroup containing only
rR has the score, 0.89467, which is the highest score in the
condition that we must take the subgroup rR in the group R
and we can take any descriptors in the other groups. (A
subgroup which has a descriptor is also a subgroup.) The
subgroup containing rR, ZR, and rcvR has the score, 0.95445,
which is the highest score in the condition that we must take
at least one descriptor in the subgroup rR, ZR, and rcvR of the
group R and we can take any descriptors in the other groups
as explained in the previous paragraph.

The sole descriptor ZR in the group R has the highest score
(0.95445). It means that ZR can solely represent the group R.
This is also the case for the CR subgroup in the group S.
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Fig. 2. (Color online) R2 scores of the subgroup relevance analysis on the hierarchical clustering of the descriptors. We include TC in the dendrogram. The
group R (green) is from L4f to rcvR . The group T (red) is from IPT to rT. The group S (cyan) is from dTT to CT. The group dTR is made of the descriptor dTR. The
horizontal values are strong relevance values and the tilted values are weak relevance values. The vertical axis shows the distance, d, and the values are one
minus the absolute values of Pearson’s correlation coefficient. The paths of the highest value (0.95445) are colored in yellow dashed lines. See details in the
main body also.
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However the structure of the group T is different from those
of the groups R and S. The subgroup made of J3d, �T, rcvT , ZT

(and rT and S3d) has the highest score (0.94876), but its child
subgroup descriptors have smaller scores (0.92427 and
0.94650). It means that there exists no single descriptor that
can represent the overall nature of the group T. When we
examine all the combinations made of J3d, �T, rcvT , ZT, we
find that ZT takes the best score (0.95450) if we choose only
one of the descriptors among them, a set of ZT and J3d is the
best (0.95339) for two descriptors, and a set of ZT, J3d, and
L3d is the best (0.95445) for three descriptors. We note that
the descriptor ZT has the same effect as S3d. We discuss
interpretation of the result later.

We can also obtain the importance of the groups from the
horizontal values above the yellow solid line in Fig. 2. They
are the strong relevance values, or leave-one-out values of the
groups T, R, and S. For example, the group R has the value,
0.87587, which is the best score when we remove all the
descriptors of the group R. The better the score is, the less
important the group is. The value, 0.50682, is the smallest
among them, which means that the group S is the most
important among the groups. On the other hand, the least
important group is R, the value of which is 0.87587. It means
that the score still holds a high value even if we exclude all
the descriptors in the group R. Therefore, the importance of
group R is the lowest among T, S, and R.

We have added additional explanation in Fig. 2. The
descriptor J4f ð1 � gJÞ can represent the subgroup containing
gJ; . . . ; J4f gJ, but the score is 0.93296, which is lower than
the score 0.95445 of ZR. We have also added a comment on
the group of dTR. The strong relevance value is 0.95445 and
the weak relevance value is 0.95382. The facts that their
difference is small and that the weak relevance value is
smaller than the strong relevance value mean that the
existence of the group dTR makes the regression model
worse.

Here, we compare the result of the subgroup relevance
analysis shown in Fig. 2 with the best score having n
descriptors without the subgroup relevance analysis, which is
shown in Table II. The set of CR, ZR, and ZT has the best
score (0.94222) for n ¼ 3. The set of CR, ZR, ZT, and JR has
the best score (0.95339) for n ¼ 4. The set of CR, ZR, ZT, JR,
and L3d has the best score (0.95429) for n ¼ 5. The
descriptor sets are made of the most important descriptors
in group R (ZR), group S (CR), and group T (ZT when we
choose a descriptor; J3d and ZT when we choose two
descriptors; and J3d, L3d, and ZT when we choose three
descriptors.) These combinations are the same as the analysis
in the previous paragraph. Thus, the subgroup relevance
analysis successfully illustrates the structure among the
descriptors and their importance.

One may think that the difference in the scores are quite
tiny. For example, 99.0% value of the global best score is
0.944, which roughly corresponds to the best score with 12
descriptors (see also Table I in the supporting informa-
tion).18) However the predicting ability changes drastically.
We plot the “RMSE” between the best models with n
descriptors in Fig. 2 in the supporting information.18) It can
be clearly seen that the prediction abilities for n ¼ 3 to 8 is
qualitatively different from those for n � 9, but the difference
of the score of the best model with 9 (10) descriptors to the

global best model is only 0.1% (0.4%). The difference in the
score looks tiny at a glance, but is meaningful in this data and
regression model. (One must also discuss the total density of
state of the scores to discuss the meaningful difference of the
scores, but it is beyond the scope of this study.14–16))

The ordering of the scores of the models (combinations
of descriptors) can be changed according to the details of
the regression scheme and noise in the data, because the
differences in the scores are quite small (Table II in the main
body and Table I in the supporting information).18) Thus, just
showing the best models with n descriptors may give us
wrong information. However the relevance analysis can give
us more significant differences. The dendrogram, or group-
ing, does not depend on the scores of the models because it is
made only of the distances between the descriptors. Even if
there exists noise in the data, which may affect the scores of
the model, we can expect that similar descriptors will give
similar scores. The subgroup relevance analysis can illustrate
how the distances, or the similarities, between the descriptors
affect to the models.

Here, we further explain the advantage of the expression
with the dendrogram. For example, we can easily choose rcvR
if we do not want to use ZR if the importance is expressed as
in Fig. 2. It enables us to find the next best route, that is, to go
upward and try a new branch downward in the tree structure.
We believe that this expression is much better than simply
providing a list, and it is much easier to find out the
operation-optimized regression models.

We can conclude that the descriptor CR is strongly relevant
when we define the subgroups at d � 0 and execute the
leave-one-out experiment. The original relevance analysis is
the special case of the subgroup relevance analysis. There-
fore, the subgroup relevance analysis is a natural extension of
the original relevance analysis.

Here, we note the possible interpretation of the regression
model in the context of condensed matter physics, where
we know that physics should depend not on J4 f but on
J4fð1 � gJÞ in the effective model Hamiltonian. We, however,
found more important descriptors, e.g., ZR and rcvR in the
group R and J3d in the group T. It is more plausible that
the regression model found a relationship similar to the
generalized Slater–Pauling curve for Curie temperature as a
function of CR and ZT and ZR, and that the other effects are
only marginal.24) We introduced many descriptors that cannot
appear in the atomic-scale effective model Hamiltonian, and
the regression model simply selected the inter-scale regres-
sion model including the macro scale parameter CR first and
ZT and ZR next, which do not directly appear in the effective
model Hamiltonian because their relationships are more

Table II. The best R2 score and descriptors as a function of the number of
descriptors n.

n Score Descriptor(s)

2 0.87015 CR, ZT

3 0.94222 CR, ZR, ZT

4 0.95339 J3d, CR, ZR, ZT

5 0.95429 L3d, J3d, CR, ZR, ZT

6 0.95439 L3d, J3d, �T, CR, ZR, ZT

7 0.95445 L3d, J3d, �T, CR, ZR, ZT, rcvT
8 0.95445 L3d, J3d, �T, IPT, CR, ZR, ZT, rcvT
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apparent. It should be noted that the number of data, only
about a hundred, is too few to discuss the details because it
can easily change the prediction accuracy as discussed in the
supporting information.18)

We cannot avoid errors in TCs because of experimental
errors and human errors. The latter is mainly because
AtomWork does not allow web scraping. We examine the
possibility of outlier detection using machine learning. We
show a plot of experimental TCs versus predicted ones in the
supporting information.18) The overall coincidence is good
from 0K to ∼1300K, but there exist a few outliers. We
mainly check the outliers of TCs and fix the errors again and
again if there are any. We found three major errors and a
minor error. After fixing these errors, we evaluated the cross-
validation test scores again for the best n descriptors of the
original regression model. The best R2 was 0.96688. By
using machine learning, it may be able possible to find data
errors efficiently; however, it cannot detect data prediction of
which appears consistent with the experimental values
accidentally.

We employed Pearson’s correlation coefficient to define
the distance in this study. However, there exist many choices
for the distance. It depends on the problem whose repre-
sentation is the most appropriate in the unsupervised learning
part. We use the similarity, or distance, between materials to
find the regression model, but usually discard the similarity
between descriptors to make the regression model. We,
however, utilized the latter similarity, and therefore took full
advantage of the similarity of the data in this prescription.

We showed that the distances between the descriptors
are useful to illustrate the importance of descriptors and
descriptor groups. This result is not strange when the
descriptors have some physical meaning. There exists,
however, minor discrepancies in the subgroup containing
ZR, J3d, and L3d in the dendrogram. This is a limitation of this
theory; however, it is possible to overcome this difficulty. We
used the distance between the descriptors to explain the
scores of the relevance analysis, but its inverse problem is
also possible. We can set the value of distances between the
descriptors, or the structures of the dendrogram, to be more
consistent with the scores of the relevance analysis.

We can consider many variants of the subgroup relevance
analysis. We took the best descriptor from the subgroup
shown in yellow in Fig. 2. Thus, we were able to show the
best descriptors in the subgroup. Another method is to take
the best subgroup in the downstream to a specified subgroup.
Then, we will be able to understand the relationship among
subgroups, and we can easily change them depending on the
purpose.

Note that the Monte-Carlo tree search also utilizes the
same nature of tree structures. There may be a route to find
out the almost best regression model by utilizing subgroup
decomposition without performing expensive exhaustive
search.

In summary, we studied the data-driven approach on the
Curie temperature of rare-earth transition metal stoichiomet-

ric alloys. We successfully made regression models that
achieved high scores from our descriptors. We developed
subgroup relevance analysis and successfully illustrated the
importance, relationship, and structures among the descrip-
tors from a huge list of exhaustive search. In addition,
it should be noted that our method makes full use of the
similarity of the given data.
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