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ABSTRACT
We present Grobid-quantities, an open source application for ex-
tracting and normalising measurements from scientific and patent
literature. Tools of this kind, aiming to understand and make un-
structured information accessible, represent the building blocks for
large-scale Text and Data Mining (TDM) systems. Grobid-quantities
is a module built on top of Grobid [5], a machine learning frame-
work for parsing and structuring PDF documents. Designed to pro-
cess large quantities of data, it provides a robust implementation
accessible in batch mode or via a REST API. The machine learn-
ing engine architecture follows the cascade approach, where each
model is specialised in the resolution of a specific task. The models
are trained using CRF (Conditional Random Field) algorithm [11]
for extracting quantities (atomic values, intervals and lists), units
(such as length, weight) and different value representations (nu-
meric, alphabetic or scientific notation). Identified measurements
are normalised according to the International System of Units (SI).
Thanks to its stable recall and reliable precision, Grobid-quantities
has been integrated as the measurement-extraction engine in vari-
ous TDM projects, such as Marve (Measurement Context Extraction
from Text), for extracting semantic measurements and meaning in
Earth Science [9]. At the National Institute for Materials Science
in Japan (NIMS), it is used in an ongoing project to discover new
superconducting materials. Normalised materials characteristics
(such as critical temperature, pressure) extracted from scientific
literature are a key resource for materials informatics (MI) [8].
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1 INTRODUCTION
The data overflow in scientific publications makes rapid access to
relevant information a challenging issue, for both researchers and
readers. One of the essential element found in scientific literature is
the physical quantity or measurement, which combine quantifica-
tion of units (such as grams or micrometres) and quantified object
or substances. The automatic extraction of measurements has been
studied for many years. Nowadays, although the technology has
been evolved, there are still several challenges to overcome: (1) nat-
ural language and writing style have varieties of expressions (for
example length can be expressed as m, meter, metre). (2) Overlaps
between the different units of measurement (pico Henry inductance
and acidity share the same notation, pH ). (3) The physical quantities
or measurements are scalable by accompanying units (e.g., 1 pl. =
453.6 g), meaning that value and unit combination and its normalisa-
tion are necessary for semantic recognition. The need for a precise
automatic generation of databases from physical measurements is
common to a wide range of domains.

In this paper, we present Grobid-quantities, an Open Source
application for identifying, parsing and normalising measurements
from scientific and patent literature. Using Conditional Random
Field (CRF) [11], it provides a machine learning framework for
extracting information in a robust manner, and then normalise
them toward the International System of Units (SI). This article is
organised as follow. In Section 2 we introduce related work. Then,
we describe the system in Section 3 and report its evaluation results
in Sections 4. Use cases and future scopes are described in Section
5. Section 6 concludes this paper.

2 RELATEDWORK
Attempts to extract measurements from text have been made using
rule-based (formal grammars engines, look-ups in terminological
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databases) and ML approaches. A known commercial tool, Quan-
talyze1, was reported by [9] showing weak recall and supporting
only a limited subset of units [3]. Another approach [1], using
GATE (General Architecture for Text Engineering), addressed the
identification of numeric properties from patents. [2] investigated
issues applied to Russian-derived languages. These approaches lack
either the generalisation to an extensive corpus or deal mainly with
specific languages. [4] described an attempt to recognise units by
looking up terms from an ontology, using ML in combination with
pattern matching and string metrics. Other ML-based approaches
exist, although limited to specific domains: [10] and [7] describe
measurements extraction from experimental results in biology and
nanocrystal device development, respectively. Our work is not re-
stricted to a specific domain or subset of measurements and includes
a normalisation process.

3 SYSTEM DESCRIPTION
Grobid-quantities is a Java application, based on Grobid (GeneR-
ation Of BIbliographic Data) [5], a machine learning framework
for parsing and structuring raw documents such as PDF or plain
text. Grobid-quantities is designed for large-scale processing tasks
in batch or via a web REST API. Results information are standard-
ised and can be stored in databases or visualised on PDF, via the
obtained GROBID build-in positional coordinates.

3.1 Data model

Figure 1: Schema of the data model.

The data model (Figure 1) lay its foundation on the concept of
Measurement, which links an object or a substance with one or
more quantities. We defined four Measurements types: (a) atomic,
in case of a single measurement (e.g., 10 grams). (b) interval (from 3
to 5 km) and (c) range (100 ± 4 mm) for continuous values, and, (d)
a list of discrete values. A Quantity links the quantitative value and
the unit. At this stage we do not support probability distribution of
ranges and intervals. Since data extracted from PDFs unavoidably
present irregular tokens from wrong UTF-8 encoding or missing
fonts, we designed this model to allow partial results. The Value
and Unit entities allow three different representations (Figure 1):
1https://www.quantalyze.com/

Raw as appear in input, Parsed unifies the value into the numerical
expression, and the unit with its properties (system, type). Finally,
Normalised contains the transformed unit and values to the SI sys-
tem. Value object supports four types of representations: numeric
(2, 1000), alphabetic (two, thousand), scientific notation (3 ·105), and
time, which is also expression of measurements. Units objects are
organised following the SI, which allows representing units as prod-
ucts of simpler compounds (e.g. m/s tom · s-1) further decomposed
as triples (prefix, base and power).

3.2 Architecture
The system takes in input text or PDF and performs three steps:
(a) tokenisation, (b) measurement extraction and parsing and (c)
quantity normalisation. The details of each step are summarised as
follows.

3.2.1 Tokenisation. This process splits input data into tokens. Grobid-
quantities uses a two-phase tokenisation: (1) first it splits by punctu-
ationmarks, then (2) each resulting token is re-tokenised to separate
adjacent digits and alphanumeric characters. Given the example
25mˆ2, first returns a list [25m, ˆ, 2] and then recursively divides
25m as [25, m] resulting in [25, m, ˆ, 2].

3.2.2 Extraction. The tokenised data is labelled by three models,
applied in cascade: the Quantities CRF model determines appro-
priate unit and value tags. Results are processed in cascade by the
respective Units and Values CRF models as illustrated in Figure 2.

Figure 2: The cascade approach in applied CRF models.
The Quantities model recognises value and units which are
passed, respectively, toValues andUnits CRF sub-models for
further extraction.

As illustrated in Table 1, Quantities CRF model uses additional
labels (such as <unitLeft>, <unitRight> for units) to correctly re-
construct complex objects from the flat structure obtained from the
sequence labelling output.

Previous work (Section 2) presented extensive use of databases
or ontologies. In our solution, we used a similar approach. We
created a list of units (in English, French and German) with their
characteristics: system (SI base, SI derived, imperial, ...) and type
(volume, length, ...), and their representations: notations (m3, mˆ3),
lemmas (cubic meter, cubic metre) and inflections (cubic meters,
cubic metres). We made this list available through the Unit Lexicon,
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Table 1: Labels description for the CRFmodel for Quantities.
In bold the token the label refers to.

Label Description Example

<valueAtomic> value of an atomic quantity 2 m
<valueLeast> least value in an interval from 2 m
<valueMost> max value in an interval up to 7 m
<valueBase> base value in a range 20 ± 7 m
<valueRange> range value in a range 20 ± 7 m
<valueList> list of quantities 2, 3 and 10 m
<unitLeft> left-attached unit pH 2
<unitRight> right-attached unit 2 m
<other> everything else -

which offers unit lookups by properties (such as notation, lemma,
inflexion). A second gazetteer was created to allow the transforma-
tion of alphabetic values in numeric ones (for example, twenty-one
to 21).

Features in the Quantities CRF model are generated using stan-
dard information (preceding and following tokens, presence of
capital, digits). Orthogonal features are obtained through the Unit
Lexicon, like a Boolean indicating whether a token is a known
unit or not. Typographical information (such as format, fonts, sub-
script/superscript) are ignored.

The Units CRF model works at character level and uses the Unit
Lexicon to highlight known units or prefixes. The input tokens are
parsed and transformed to a product of triples (prefix, base, power)
as shown in Table 2. For example Kg/mm2, corresponds toKд ·mm-2

and becomes [(K, g, 1), (m, m, -2)] as product of triples.

Table 2: Labels description for the CRF Unitsmodel. The ex-
ample shows in bold the part referred by the label.

Label Description Example

<prefix> prefix of the unit km2

<base> unit base km2

<pow> unit power km2

<other> everything else -

We then use the structured triples to fetch the corresponding
(system, type) information from the Unit Lexicon and attach them to
the resulting object. At the moment we do not exploit any contex-
tual information related to the paper domain to resolve ambiguous
units. In parallel, the CRF Values model unifies the format of identi-
fied values into numerical formats. It supports four types: numeric,
alphabetic, scientific notation, and time expression (see Table 3).
Each type is treated with different parsers, namely alphabetic ex-
pressions are looked up in the word-to-number gazetteer, scientific
notations are parsed and calculated mathematically. Time expres-
sions are processed using the built-in Date Grobid model [5].

3.2.3 Normalisation. Themeasurements extracted are transformed
to the base SI unit (grams to kg, Celsius to Kelvin, and so on). We
used an external Java library called Units of Measurement which
provides a set of standard interfaces and implementations for safely

Table 3: Labels description for the CRF model for Values. In
bold an example of tokens for the specific label recognise.

Label Description Example

<number> numeric value / coefficient 2.5 · 105
<alpha> alphabetic value twenty
<time> time expression in 1970-01-02
<base> base in scientific notation 2.5 · 105
<pow> exponent in scientific notation 2.5 · 105
<other> everything else -

handling units and quantities. Manipulating measurements with
transformations often lead to common mistakes due to wrong
rounding and approximations. At the time this paper is being writ-
ten, the final revised version of this library has been accepted under
the Java Standardisation Process JSR-385.

4 EVALUATION AND RESULTS
We trained and evaluated our system using a corpus of 32 Open Ac-
cess (OA) English articles retrieved from different domains such as
medicine, robotics, astronomy, and physiology. The corpus contains
additionally three patents translated in English, French and Ger-
man. Three people annotated the corpus, and each document was
cross-checked. The corpus, although small, is public, documented
and open to external contributions. We partitioned training and
evaluation data using 80/20 proportion. We estimated precision,
recall and F1-score for each model, using the evaluation framework
built-in in Grobid. These measure indices are calculated at three
different levels: token-level, field-level and instance-level. Given
a fragment with their predicted and expected labels. While token-
level scores are calculated independently for each token, field-level
scores are calculated for each continuous sequence of tokens under
the same label (a sequence of several tokens which all belong to
the same labelled chunk, e.g. a unit), finally instance-level is the
aggregated score of fields in the whole paragraph [8].

Table 4: Evaluation scores for Quantities CRF model (preci-
sion, recall and F1-score).

Label Token-level Field-level
P R F1 P R F1

<unitLeft> 98.94 95.23 97.05 97.8 95.11 96.43
<unitRight> 66.67 66.67 66.67 59.09 54.17 56.52

<valueAtomic> 86.63 87.81 87.22 87.39 87.17 87.28
<valueBase> 95.12 100 97.5 94.12 94.12 94.12
<valueLeast> 82.81 65.43 73.1 81.89 67.1 73.76
<valueList> 77.69 56.63 65.51 76.06 58.06 65.85
<valueMost> 78.05 73.44 75.68 81.68 64.46 72.05
<valueRange> 96.67 100 98.31 94.44 94.44 94.44

average 88.81 85.08 86.9 89.59 84.6 87.02

As shown in Tables 4 we obtained average F1-score of 86.9%
and 87.02% for token and field level respectively. The low score for
<valueLists> and <unitRight> suggests that more examples of that
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kind are required. The highest F1-score for <valueRange> above 90%
is reasonable, because of limited variety in expressions for a Range
as compared with normal Intervals. The recall at instance level is
68.49%, indicating that more than half of the evaluated paragraphs
were correctly labelled.

Table 5: Units CRF model evaluation results (precision, re-
call and F1-score).

Label Token-level Field-level
P R F1 P R F1

<base> 97.52 92.49 94.94 77 82.8 79.79
<pow> 81.82 90 85.71 73.33 84.62 78.57
<prefix> 62.79 93.1 75 70.27 92.86 80

average 90.64 92.37 91.49 75 85.07 79.72

Table 5 shows that Units CRF models F1-score is 91.49% and
79.72% for token and field level, respectively. The F1-score dropped
by 10% from token to field-level. We noticed a strong bias toward
base-only unit examples. While this make sense, because simple
units are statistically more frequent, it indicates that more examples
covering complex units are needed. Instance-level recall is not
reported for Units and Values because it overlap with field-level as
most of the instances are composed by one field.

Table 6: Values CRF model evaluation results (precision, re-
call and F1-score).

Label Token-level Field-level
P R F1 P R F1

<alpha> 100 100 100 100 100 100
<base> 86.67 46.43 60.47 66.67 42.86 52.17

<number> 91.75 97.45 94.51 90.43 97.2 93.69
<pow> 92.86 65 76.47 77.78 50 60.87
<time> 89.83 86.89 88.33 54.55 75 63.16

average 91.85 90.95 91.4 86.18 86.75 86.47

Finally, Table 6 indicate that Values CRF model has average f1-
score of 91.4% and 86.47% for token and field level, respectively. We
noticed that both <base>, <pow> and <time> have lower f1-score,
suggesting that more contextual information should be introduced
as features, like tokens preceding or following the value.

5 APPLICATIONS
Recently, the normalised data extraction is strongly required in
materials research, because an inverse problem in which high-
performance materials are predicted from properties is expected to
be solved with well-organised big data. At the National Institute for
Materials Science (NIMS), a project to discover new superconduct-
ing materials from scientific literature is in progress. The system be-
ing developed relies on Grobid-quantities to extract and normalise
superconducting properties, such as critical temperature (Tc) with
units of mK and K and critical pressure expressed with units of Pa,
MPa, and GPa [8]. Grobid-quantities was showcased also in a TDM

prototype (within the scope of the French national-wide ISTEX [6]
project) where it provided measurement annotations used to pro-
totype a quantities-based semantic search2. Finally, another use
was made in a system for extracting semantic measurements and
meaning in Earth Science, Marve [9].

6 CONCLUSION
In this paper, we presented Grobid-quantities, a system for ex-
tracting and normalising measurement from scientific and patent
literature. Results are promising, and the integration in real appli-
cations proved a consolidated level of maturity. There is still the
need to have more training data, in particular for the Quantities and
Units CRF models, respectively. In the future, we plan to improve
the extraction by introducing embeddings and recurrent neural
networks, like Bi-LSTM+CRF as a replacement for the statistical
CRF models. In the same scope we plan to add more contextualised
information (article domain) and additional layout features (like
for example superscript/subscripts). The project, the training data
and the documentation are accessible on Github at the address
http://github.com/kermitt2/grobid-quantities.
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