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ABSTRACT
In this study, we develop a computer-aided material design system to represent and extract
knowledge related to material design from natural language texts. A machine learning model
is trained on a text corpus weakly labeled by minimal annotated relationship data (~100
labeled relationships) to extract knowledge from scientific articles. The knowledge is repre-
sented by relationships between scientific concepts, such as {annealing, grain size, strength}.
The extracted relationships are represented as a knowledge graph formatted according to
design charts, inspired by the process-structure-property-performance (PSPP) reciprocity. The
design chart provides an intuitive effect of processes on properties and prospective processes
to achieve the certain desired properties. Our system semantically searches the scientific
literature and provides knowledge in the form of a design chart, and we hope it contributes
more efficient developments of new materials.
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1. Introduction

Machine learning and data science for knowledge
extraction are studied in a wide variety of field.
Knowledge extraction is to find desired knowledge
from text. For example, relationships among scientific
knowledge are extracted from scientific literature in
ScienceIE [1], and a knowledge base is extracted from
Web text in TAC.1 The impressive performance of
machine learning appears promising for knowledge
extraction in material design as well.

Material design is a process of developing new
materials with specific properties. In most practical
cases, the desired process cannot be envisioned, and
instead it is constructed by trial and error. In this
approach, a trial is a time-consuming experiment.
Minimizing the number of trials is critical for an
efficient development. On the contrary, such efficient
development is challenging because 1) The relation
between a process and a property is unclear and

indirect; and 2) The search space (the set of possible
processes) is too large to look up.

In practice, researchers find these processes relying
on their end-to-end knowledge including effects of
processes to the properties. Such knowledge is tech-
nical and might not be well formalized, so they spend
long time to obtain such knowledge. We believe it is
beneficial to provide the end-to-end knowledge for
accelerating material developments.

1.1. Knowledge representation

The processing-structure-property-performance (PSPP)
reciprocity [2] explains effect of processes on properties
in three stages. The first stage is ‘process’ that can be
controlled to develop a newmaterial. The second stage is
‘structure’ of the material that the processes build. The
third stage is ‘property’ that the structure gives. The
properties in the third stage give the total performance
of the new material.
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The PSPP design chart [3] represents end-to-end
knowledge in the form of relationships among fac-
tors, as shown in Figure 1 [4]. A factor represented by
a node is an important phenomenon or concept for
material design, such as annealing, grain size, and
strength. A factor is classified into one of the three
stages, ‘process’, ‘structure’, and ‘property’, where the
factor performs. For example, annealing is an impor-
tant concept in ‘process’. Following the PSPP reci-
procity, a factor is influenced by connected factors to
its left, and influences factors connected to its right
(i.e. a process builds structures, and a structure influ-
ences properties of the material). These relations are
represented by their connectivities. The chart intui-
tively represents end-to-end knowledge in the form
of relationships between processes and properties
mediated by structures [5].

1.2. Data limitation

Despite major developments in machine learning, the
technology suffers from limited data availability for
model training in practical cases. For example,
AtomWork [6], one of the largest databases available
for material design, contains records of more than
55,000 properties of materials. However, the knowledge
in the database unlikely covers all knowledge needed for
material design. For example, AtomWorks covers crys-
tal structures and related properties such as lattice con-
stant and space group but microstructures of materials
are unlisted. Such limited data likely lead to over-fitting
during training, and thus to poor performance.

In this study, we aim to overcome the problem of
limited data availability using Natural Language
Processing (NLP), an application of machine learning
technologies to natural language resources, such as
scientific articles and Web texts. Natural language
resources are widely available and are machine read-
able, for a variety of fields including material design.
For example, Elsevier’s API2 provides access to over
250,000 fully digitized scientific articles. More impor-
tantly, natural language is the most popular means of
representing knowledge, and our desired knowledge
is thus likely to be present.

1.3. Weakly supervised learning

We leverage weakly supervised learning to identify
relationships in the PSPP chart. Weakly supervised
learning is used to train a model with a minimal
number of annotations for relation identification
[7]. In a typical supervised setting, the training
data for relation identification is a sentence labeled
with entities in the sentence and the relations
among them. However, labeling sentences is expen-
sive because an annotator must read a sentence,
and label the entities and relations described
therein. This renders each label clean and strong.
On the contrary, in a weakly supervised setting, a
knowledge base produces a pair of entities and
their relations and all sentences containing these
entities are weakly labeled with the given relation.
For instance, for the given entities, Elevation
Partners and Roger McNamee, and their relation

Figure 1. The process-structure-property-performance reciprocity.
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founded_by, both of the following sentences are
labeled with founded_by,

Elevation Partners, the $1.9 billion private equity
group that was founded by Roger McNamee;

Roger McNamee, a managing director at Elevation
Partners,. . .;

where the first sentence describes the relation foun-
ded_by but the second sentence does not. Weak labels
do not require any annotations but the knowledge
base, however; they are noisy, and a model needs to
overcome the noisy labels.

In recent years, convolutional neural network
(CNN) models have surpassed feature-based models
[7–11]. CNNs are a class of neural networks with con-
voluted neural units. Residual learning is used to help
the deep CNN network [12]. Zeng et al. [13] split a
sentence into three parts, and then applied max pooling
to each part of the sentence over a CNN layer.

Sentence-level attention is introduced for selecting
a key sentence. In this approach, a network takes a set
of sentences for a relation between two entities. Each
sentence contains both entities. An attention
mechanism over a CNN allows the network to auto-
matically select a key sentence, which is likely
describing the desired relation. It seems helpful to
overcome the problem of noisy labels [14–16].

1.4. Our contribution

We develop a computer-aided material design
(CAMaD) system with the aim of generating a PSPP
design chart for desired properties from text. The
PSPP chart suggests prospective processes to achieve
given arbitrarily desired properties. The system is
based on a machine learning model for relation
extraction from text. The model is efficiently trained
with weakly supervised learning, which minimizes the
annotation cost of the training data. We believe the
PSPP chart helps more efficient material develop-
ments by suggesting a prospective process.

Our contribution in this study is twofold. First, we
proposed a novel knowledge graph based on PSPP
charts and developed a system to build the knowledge
graph from text using NLP technologies. Second, we
experimentally verified that such technical knowledge
can be extracted from text using machine learning
models. Our target knowledge is relations in PSPP
design charts. These relations appear rather technical
and significantly different from typical relations in
NLP such as ‘has_a’ and ‘is_a’. Extraction of these
relations from text only is difficult and might need
other knowledge resource such as equations and
properties of materials. We, however, experimentally
verified that a state-of-the-art machine learning
model can extract these relations from text.

In the following sections, we formalize our task with
three subtasks in Section 2 and describe our pipeline
system for each subtask in Section 3. We are especially
interested in the second subtask; we evaluated our
system for the subtask in Section 4, and present the
results in Section 5. We also briefly describe the end-to-
end implementation in Section 6, and future works in
Section 7.

2. Our approach and task definition

Our approach is knowledge graph population and
graph search. The knowledge graph represents
knowledge concerning material design. It consists of
factors and their relations following PSPP reciprocity,
and a PSPP chart is considered as a part of the graph
with factors related to desired properties. Thus in this
approach, we first extract the structure of the graph
from text (knowledge graph population) and then
find a PSPP chart from the graph for a desired mate-
rial (graph search).

The PSPP knowledge graph consists of nodes and
edges between them. Each node represents a factor, an
important concept in material design. A factor is clas-
sified into one of ‘process’, ‘structure’, and ‘property’.
Each edge is a relation between factors represented by
the nodes. The nodes are connected by the edge if and
only if the corresponding factors are related in the
PSPP chart. Therefore, there is no edge between pro-
cessing factors and structural factors.

A PSPP chart is considered part of the PSPP
knowledge graph for a developing material. For
instance, considering a typical material development
scenario, where a new material is desired with specific
properties, the PSPP chart is composed of factors
related to the desired properties. The PSPP chart is
part of the PSPP knowledge graph around the nodes
of the desired property factors.

Following this approach, the task is decomposed
into three subtasks: factor collection, relation identi-
fication, and branching.

The first subtask is to collect factors for nodes in
the PSPP knowledge graph, and these factors are
classified into each PSPP class. A factor is an impor-
tant scientific concept for material design and is clas-
sified into ‘process’, ‘structure’, or ‘property’
following PSPP reciprocity. For example, process fac-
tors include ‘tempering’ and ‘hot working’; structural
factors include ‘grain refining’ and ‘austenite disper-
sion’; and property factors include ‘strength’ and
‘cost’. Each factor is represented by a node in the
PSPP knowledge graph, i.e. a node represents a pro-
cessing, structural, or property factor.

The second subtask is relation identification,
where relations among nodes in the PSPP knowledge
graph are identified by reading text. In this subtask,
for two given nodes and sentences mentioning the
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factor represented by these nodes, their relation is
identified. Following PSPP charts, the relation is
labeled in binary manner, i.e. positive or negative. A
positive relation between factors A and B indicates
that ‘factor A affects factor B’, and a negative relation
between factors A and C indicates that ‘factor A
occurs independently of factor C’. In a chart, two
nodes are connected if their factors of the nodes
have a positive relation, and are otherwise uncon-
nected. Thus, denoting a pair of factors by ðf1; f2Þ,
the desired relation is

hðf1; f2Þ ¼ pos=neg: (1)

The third subtask is to obtain a PSPP chart by
branching the PSPP knowledge graph. We assume a
scenario where a scientist is developing a new mate-
rial with certain desired properties and looking for
factors related to the properties in a PSPP chart. In
this scenario, the PSPP chart is part of the PSPP
knowledge graph, with certain factors around the
desired properties. Thus, the subtask is to find part
of the PSPP knowledge graph given a set of
properties.

3. System description

Our system is a pipeline system consisting of three
components for each subtask. The first component
collects factors from a keyword list (Section 3.1). In
the second component, a relation between two nodes
is identified by reading sentences containing the fac-
tors represented by the nodes in the CNN model
(Section 3.2). In the third component, part of the
PSPP knowledge graph is extracted for the given
desired properties by a simplified maximum flow
algorithm (Section 3.3).

3.1. Factor collection

First, factors are collected from the keyword list of
the journal Scripta Materialia.3 Such keywords help
identify the topics of each article. The keyword list is
divided into five sections: 1) Synthesis and
Processing; 2) Characterization; 3) Material Type; 4)
Properties and Phenomena; and 5) Theory,
Computer Simulations, and Modeling. In this
approach, keywords in synthesis and processing are
collected as processing factors, those in material type
are collected as structural factors, and keywords in
properties and phenomena as property factors.

Second, structural factors are collected from text
using linguistic rules. From a material science stand-
point, the number of structural factors is significantly
greater than those of processing and property factors,
and the keyword list is not long enough to cover struc-
tural factors. Candidate phrases, noun phrases consist-
ing of multiple NNs (singular nouns, or mass nouns),

are collected from a corpus described in Section 4.2
using Stanford CoreNLP [17]. Each candidate phrase
is classified into structural factors if it does not contain
any words in the keyword list. The phrase containing a
keyword is classified as the class of the keyword. For
instance, Figure 2 lists two sentences with noun phrases.
Here ‘phrase_transition’ is classified as a structural fac-
tor, but ‘hardness_distribution’ is classified as a prop-
erty factor, as ‘hardness’ is in the keyword list.

All keywords and the n most frequent candidate
phrases are collected, and each word/phrase is
assigned a node in the PSPP knowledge graph. The
total number of factors was 500, 500, and 1000 for
process, property, and structural factors, respectively.
Table 1 lists samples of the n most frequent phrases.

3.2. Relation identification

In this section, we describe our CNN model for identi-
fying the relation of a factor pair by weakly supervised
learning. We also describe the linguistic resource for
the factor pair where the model was trained.

The linguistic resource of a factor pair is a set of
sentences mentioning both factors. A mention is a
part of a sentence referring to a factor. A factor is
mapped to the mention in the sentence by max-span
string matching, i.e. a factor is mapped to the men-
tion if the mention is the factor name, and no other
mention overlaps the given mention. For instance,

• Within each phase, the properties are . . .
• When a substance undergoes a phase transi-
tion . . .

The phase in the first sentence is mapped to a factor,
‘phase’, but phrase transition is mapped to ‘phase_-
transition’ instead of ‘phase’ in the second sentence.

Table 1. Samples of factors obtained by the linguistic rules.
Process Structure Property

water quenching carbon dioxide creep behavior
element modeling grain distribution fatigue behavior
peak temperature particle size

distribution
misorientation angle

rolling texture matrix phase shock resistance
deformation mode β titanium alloy fracture strain
microwave
sintering

β grain size tensile ductility

plasma sintering solution strength fracture behavior
discharge
machining

pore size vacuum induction
melting

(1)

(2)

Figure 2. Sentences containing noun phrases.
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A sentence in the linguistic resource of a factor pair is
a sentence mentioning both factors.

The CNN model proposed by Huang et al. [12] is a
state-of-the-art deep neural network model for
weakly supervised relation extraction. For each sen-
tence in a linguistic resource, the network takes word
embeddings and the relative position embeddings
toward factors in the sentence. Convolutional units
with a deep residual learning framework then embed
the sentence into a vector representation. The sig-
moid layer over the vector representation produces
the probability distribution of the binary relation.
Figure 3 shows the overall structure of the network.

The input to the model is a sentence and the output
is a relation r 2 pos; negf g. Let ðf1; f2Þ be factors of the
relation and s 2 Sf1;f2 be the sentence, i.e. the linguistic
resource, Sf1;f2 is a set of sentences mentioning the
factors. Each sentence s is padded to a fixed length L.

A token embedding is a vector representation of a
token in a sentence, denoting the sentence
s ¼ t0; :::; ti; :::f g, where ti is the ith token. The
token representation is xi, which is a concatenation
of a word embedding and two position embeddings.
A word embedding Wð�Þ is a vector representation of
the word of the token whereas a position embedding
Pð�Þ gives a vector representation of the relative posi-
tion of each factor:

xi ¼ ½WðtiÞ; P1ðk1 � iÞ;P2ðk2 � iÞ� (2)

where Wð�Þ 2 Rdw , Pð�Þ 2 Rdp and k1; k2 are the
position indices of each factor. Note that any relative
distance greater than Dmax is treated as Dmax.

A convolution layer takes embeddings around
position i, and maps them into ci 2 Rdc :

ci ¼ gðwxi:iþh þ bÞ (3)

where xi:iþh ¼ ½xi; xiþ1; :::; xiþh�1�, w 2 Rdc�hðdwþ2dpÞ

and b 2 Rdc is a bias. g is an element-wise non-linear
function, ReLU.

Following the first convolutional layer, the other
layers are stacked with residual learning connections
that directly transmit a signal from a lower to a higher
layer while skipping the middle layers. Thus, the kth
residual CNN block consists of two CNN layers, with
one taking signals from the two lower layers:

ĉki ¼ gðŵkð~ck�1
i:iþh þ ~ck�2

i:iþhÞ þ b̂kÞ (4)

~cki ¼ gðewkĉ
k
i:iþh þ ~bkÞ (5)

where ~c0 ¼ c. The first CNN layer ĉki takes a signal
from the immediately lower layer ~ck�1

i:iþh and another

signal from the lower block ~ck�2
i:iþh.

Max pooling is performed over the output of the
last CNN units, ~cK 2 RL�hþ1�dc .

z ¼ maxpool
i

~cKi (6)

Then, two fully connected layers and a sigmoid func-
tion yield the probability distribution of the desired
relation given in the sentence Pðr ¼ pos=negjsÞ:

z1 ¼ gðwg1z þ bg1Þ (7)

Figure 3. Structure of the CNN model. The convolutional layers embed a sentence, and the max pooling and two fully
connected layers give a binary probability distribution with a sigmoid function.
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z2 ¼ gðwg2z1 þ bg2Þ (8)

Pðr ¼ posjsÞ ¼ σðvrz2Þ (9)

where wg 2 Rdc�dc and bg 2 Rdc .
The desired probability Pðr ¼ posj f1; f2Þ is the

maximum of the probabilities over sentences. This is

Pðr ¼ posj f1; f2Þ ¼ max
s2Sf1 ;f2

Pðr ¼ posjsÞ (10)

On the contrary, the model is trained on a weakly
supervised approach, where the objective function is
maximized for each sentence.

max
Φ

X
ðf1;f2;rÞ2Dtrain

X
s2Sf1 ;f2

logPðrjsÞ (11)

where Dtrain is the training data, a set of tuples of
factors f1; f2 and relation r 2 pos; negf g. The para-
meters Φ ¼ W; P1; P2;w; bf g

3.3. Branching

The PSPP knowledge graph is branched for the given
desired properties without losing related factors. We
consider the branching of a max-flow problem, where
the flow occurs from the given property factors to the
processing factors. The inlets are all nodes of the pro-
cessing factors and the outlets are those of the given
properties. The capacity of each edge is the score of the
relation, i.e. Pðr ¼ posjf1; f2Þ. Wemaximize the amount
of flow with a limited number of nodes in the graph.

We compute the capacity of a node in the graph,
which is the amount of flow that it can accept.
Recalling that nodes of structural factors are connected
to property and processing factors, and no processing
factor and property factor are connected, all flow pass
through the nodes of the structural factors. The capa-
city of the node of a structural factor fstr is

Cfstr ¼ min
X
f2PRC

Pðr ¼ posj f ; fstrÞ;
X

f2PRP0
Pðr ¼ posj fstr; f Þ

0
@

1
A

(12)

where PRC represents processing factors and PRP’ is
the desired property factors. Similarly, the capacity of
a node of a processing factor fprc is

Cfprc ¼
X

f2STR0
Pðr ¼ posj fprc; f Þ (13)

where STR’ represents structural factors that are not
branched.

The desired PSPP chart is composed of n processing
factors, m structural factors, and the desired property
factors, where n andm are the given hyper-parameters.
The nodes of the processing/structural factors are the n
andmmost capable nodes. For efficiency, the nodes are
greedily searched such that optimality is not guaranteed.

The PSPP chart shows the processing/structural factors
related to the desired properties.

4. Experiment for relation identification

Relation identification is a challenging subtask in this
research. The system performance on the subtask was
evaluated in a weakly supervised relation extraction
setting. In this evaluation, the relation was identified
as positive/negative for each factor pair.

The training data consisted of relationship data
and a corpus. The relationship data consisted of a
pair of factors and its relation label. The corpus,
scientific literature, was a set of sentences describing
the factors. A model was trained on part of the
relationship data and the corpus and was tested on
held-out data and the corpus by predicting relation-
ships in the held-out data.

Our model was trained using stochastic gradient
descent and dropout. Dropout randomly drops some
signals in the network that are thought to help the
generalization capabilities of the network. We
employed an Adam optimizer with a learning rate
of 0.00005 and randomly dropped signals from max
pooling during training with a probability of 20%.
The word embeddings were initialized with GloVe
vectors [18]. Other hyper-parameters are listed in
Table 2.

4.1. Relationship data

The relationship data consisted of tuples of two fac-
tors and their binary relation (pos/neg). From four
design charts [5], 104 factor pairs were collected as
shown in Tables 3 and 4.

Table 3. Factors in the relationship data.
Category Size

Process 17
Structure 21
Property 6

Table 2. Hyper-parameters of the CNN model.
Parameter Value

L 100
Dmax 30
K 4
h 2
dw 50
dp 5
dc 50
L2 regularization 0.0001

Table 4. Relations in the relationship data.
Relationship type Positive Negative

Process $ Structure 14 49
Structure $ Property 10 31
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For evaluation, our model was trained on part of the
relationship data and tested on the held-out data. The
training data consisted of relationships from three arbi-
trary charts out of the four, and the test data consisted of
relationships in the fourth chart. Thus, four pairs of
training and test data were prepared for the evaluation.
For accurate evaluation, the likelihoods of relationships
in the test data were computed by a model trained using
the corresponding training data. Precision and recall
curves were then computed for the overall relationship
data to obtain a smooth curve.

4.2. Corpus

Our corpus consisted of publicly accessible scientific
articles on ScienceDirect.4 ScienceDirect is an Elsevier
platform providing access to articles in journals in a
variety of fields, such as social sciences and engineer-
ing. Approximately 3400 articles were collected using
the keyword search on ScienceDirect. The keywords
were ‘material’ and ‘microstructure’, i.e. each article
was related to both ‘material’ and ‘microstructure’.

The CNNmodels were trained on a pair of factors and
sentences. As described in Section 3.2, each sentence
mentions both factors. For the relationship data, about
5000 sentences were founded in the corpus in total,
roughly 50 sentences for each pair of factors on average.

4.3. Baseline models

A baseline model is a text-classification-based binary
classifier where for each factor pair, each classifier
takes a set of sentences mentioning the factors and
classifies the text into a positive or negative relation.
The problem setting and the set of sentences were
exactly the same as the one in the CNN model.

Logistic regression and SVM with bag-of-words fea-
tures were employed for the binary classifier. These are
standard machine learning binary classifiers. Bag-of-
words is a feature that indicates whether a word is in a
set of sentences. The feature is represented by a sparse
binary vector, where an element is one if the corre-
sponding word is in the sentences and zero otherwise.

Stop words removal and n-gram features are
explored in Figures 4 and 5; however, the effect was
limited. Note that the radial basis function (RBF)
kernel was used in all SVM models.

4.4. Evaluation metric

The evaluation metrics were precision and recall,
which are the standard metrics for information
extraction tasks. Precision is the ratio of correctly
predicted positive factor pairs to all predicted positive
factor pairs and gives the accuracy of the prediction.
Recall is the ratio of correct predictions to all positive

factor pairs in the test data and gives the coverage of
the prediction. A positive factor pair is a pair whose
relation is positive. We obtain high precision and low
recall if a system returns only a small number of high
confidence predictions, and low precision and high
recall if a system returns many low confidence pre-
dictions. Typically, these are balanced by a hyper-
parameter (confidence) of system prediction. Thus,
the trajectory of precision and recall pairs is com-
puted with various values of the hyper-parameter and
is called as a precision-recall curve.

In this evaluation, the hyper-parameter was an integer
t, the number of positive factor pairs in the prediction.
For a given t and a set of factor pairs in the test relation-
ship data, the system predicts a binary relation, pos/neg,
for each pair. It predicts the t most likely positive pairs,
and the other pairs are predicted as negative.

The factor pairs in the test relationship data were
scored by a machine learning model trained on the
corresponding training relationship data, where the
score was Pðr ¼ posjf1; f2Þ. A test data corresponded

Figure 4. Precision-recall curve of the logistic regression model.
The features are ‘bag of words’, ‘bag of words + stop word
removal’ and ‘bag of unigram + bigram + trigram’.

Figure 5. Precision-recall curve of the SVM model. The fea-
tures are ‘bag of words’, ‘bag of words + stop word removal’
and ‘bag of unigram + bigram + trigram’.
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with a training data, unaware of the relationships in the
test data (Section 4.1). A model was trained on the
corresponding training data and scored a pair in the
test data to avoid letting the model know the true rela-
tionships during training.

Then, a precision and recall pair for a given hyper-
parameter t was computed as follows:

Precisiont ¼ Rt \Rtestj j
t

(14)

Recallt ¼ Rt \Rtestj j
Rtestj j (15)

where Rtest is the set of factor pairs with positive
relations in all test relationship data, and Rt repre-
sents the t most likely positive factor pairs. The like-
lihood was a score given by the model.

5. Results of relation identification

Precision-recall curves for the baselinemodels are shown
in Figures 4 and 5. These figures show various feature
representation schemes, such as stop words and n-grams
(Section 4.3) on the logistic and SVMmodels. The logistic
model performed well on low recall space, i.e. most con-
fidently predicted positive factor pairs were actually posi-
tively related. On the contrary, the performance of the
SVM model was poorer in the space but better overall
than the logistic model. In both models, the effects of the
feature representation schemes were limited.

The performance of the CNN model is shown in
Figure 6. The precision was one when the recall was
about 0.4, i.e. roughly speaking half the positive factor
pairs were perfectly identified. The performance was
superior to that of the baseline models.

Table 5 shows some representative sentences scored
by the CNN model. A representative sentence is the
highest scored sentence in a sentence set Sf1;f2 for
each factor pair, i.e. a representative sentence is
s0 ¼ argmaxs2Sf1 ;f2Pðr ¼ posjsÞ. The score is a likelihood

where a positive relation is described in the sentence. The
sentence with the highest score in each sentence set most
likely represents the positive relation of each factor pair,
according to the CNN model.

Representative highly scoring sentences seem to
describe the desired relations (sentences 4 and 8) and,
interestingly, relations described in the equation were
also discovered by the model (sentences 2, 3, and 6).
This implies that some important relations tend to be
described in an equation. This result also indicates that
the relations in which we are interested are significantly
different from typical relations in other NLP tasks like
‘has_a’, ‘is_a’.

6. End-to-end system

An end-to-end demo system was developed to test our
CAMaD system on Apache Tomcat5 as Figure 7. The
demo systemworked in a typical scenario, where a scien-
tist was looking for factors related to certain desired
properties. The demo system provides a PSPP design
chart for the desired properties that the scientist
provided.

The system input consisted of the desired properties
along with a base material. The desired properties were
selected from a list of properties collected as in Section
3.1. The base material was the target material, such as

Figure 6. Precision-recall curve over the relationship data of
the CNN model.

Table 5. Sample representative sentences scored by the CNN
model. Label P indicates that the factors are positively related
in the test relationship data and label N indicates a negative
relation. Factors in each sentence are underlined. The score is
the vrz2 of each sentence. See Appendix for the source
articles.

Score/
Label Sentence

1 36.5/P . . . the following matrix form: [11] k,u ¼ λu . . .
2 34.8/P . . . δc ¼ rσc=τ is the characteristic or critical whisker

length, f and r . . . τ is the matrix shear strength . . .
3 34.2/P . . . toughness (δkcb) and grain . . . dvpwhere, d is the

matrix . . .
4 31.0/P . . . cast iron has a pearlite matrix and . . .
5 28.6/P after solution treatment, the increase of grain size was

not obvious because of the heat resistance
introduced by . . . .2) after aging . . . .3) grain refining,
size reduction of . . .

6 26.0/N solution strengthening and precipitation strengthening
respectively, . . ., δh� p was the yield strength . . .

7 24.7/N . . .dislocation density in lath martensite matrix due to
the high content of element . . . 100 steel delayed the
recovery process during tempering . . .

8...
23.8/P lath martensite, which benefited the impact toughness

. . .

9 −13.1/P . . . the effect of ingot grain refinement on the
mechanical properties of al profiles which are
manufactured through hot working . . .

10 −14.1/N . . . refining the prior austenitic grain size . . . LONG
CONTEXT . . . the mechanical strength and cleavage
resistance . . .

11 −16.4/N . . . enhanced solid solution strengthening and
composition homogenization is larger than . . .

12 −18.7/N . . . as the solution treatment temperature increases to
. . ., the transformation . . . and the formation of rim o
phase . . .

13 −23.4/N . . . during the aging treatment, the rim o phase at the
margin of α2 grains become . . .
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aluminum or titanium. It was important to obtain the
desired knowledge. For example, the relationship
between strength and matrix in titanium alloys might
have been different from this relationship in aluminum
alloys.

Thus, relationships were extracted from the scientific
literature describing the base material. A set of studies
was specified by the base material to find the desired
knowledge. As in Section 4.2, the literature was col-
lected by keyword search in ScienceDirect. All relations
among the factors collected in Section 3.1 were scored
by the CNN model as in Section 3.2 and some relation-
ships were branched as described in Section 3.3.

The system output was a PSPP design chart sug-
gesting the required structures and processes. The
chart formed by three columns – process, structure,
and property – suggested relations from the pro-
cesses to the desired properties. Moreover, for each
relation, a representative sentence for each factor
pair was provided to justify the relation and aid
the researcher’s understanding.

7. Conclusions and future work

In this study, we developed and tested a CAMaD system,
a progressive knowledge extraction and representation

system intended to supportmaterial design, by represent-
ing knowledge as relationships. Knowledge was repre-
sented as relationships in PSPP design charts. We
leveraged weakly supervised learning for relation extrac-
tion. The end-to-end system proved our concept, and its
relation identification performance was superior to that
of other baseline models.

Further evaluation is the major feature of our
work. In spite of the impressive results of relation
extraction and brightness of the end-to-end system,
a natural evaluation metric for the end-to-end task
remains unclear. Additionally, system performances
on other subtasks, factor collection and branching,
are not evaluated in this study. Evaluations of these
subtasks are not trivial. In factor collection, there
are infinite number of factors in material design,
and it is difficult to see the coverage of factors a
system collected. In branching, there is no natural
metric to compare or evaluate PSPP design charts.
Thus, end-to-end evaluations are even more
challenging.

We consider factor collection and mapping as the
bottleneck of our system. The factor collection
described in Section 3.1 and these factors were
mapped into sentences that refer each factor in
Section 3.2. Unlike in previous works [7,11], the

Figure 7. The end-to-end demo system. a) Desired properties and a base material were selected. b) A sample of the generated
PSPP design chart. The desired properties were toughness and creep strength, and ‘steel’ was selected as base material. c) The
representative sentence describing the relation between toughness and carbon content.
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factors were not named entities. Any noun phrase can
be a factor, and factors were not predefined. At pre-
sent, our system recognizes factors in a sentence
using string matching. The obtained factors appear
to be noisy and are not correctly categorized in some
cases.

A natural extension of this task is multi-labeling.
The relation we use at present is binary (pos/neg),
and only identifies whether two factors are related.
This label might be too abstract. In multi-labeling, a
relation between factors is described with a label such
as produce, depress, and independent. We believe
multi-labeling renders the task more natural and
informative.

Notes

1. https://tac.nist.gov.
2. https://dev.elsevier.com.
3. https://www.journals.elsevier.com/scripta-materialia.
4. https://www.sciencedirect.com.
5. http://tomcat.apache.org.
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