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Abstract
Longitudinal-optical (LO) mode phonon branches of KCl and NaCl were measured using
inelastic x-ray scattering (IXS) at 300K and calculated by the first-principles phonon
calculation with the stochastic self-consistent harmonic approximation. Spectral shapes of the
IXS measurements and calculated spectral functions agreed well. We analyzed the calculated
spectral functions that provide higher resolutions of the spectra than the IXS measurements.
Due to strong anharmonicity, the spectral functions of these phonon branches have several peaks
and the LO modes along Γ–L paths are disconnected.
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1. Introduction

Phonons are the quanta related to collective vibrations of
atoms in crystal, and known to play important roles in determ-
ining a variety of crystal properties such as heat capacity,
thermal expansion, and thermal conductivity. Phonons in
Brillouin zones of crystals have been measured using inelastic
neutron and x-ray scatterings, and we can find phonon band
structures of those crystals in literature. In the last dec-
ades, computational advances to solve electronic Schrödinger
equation within the density functional theory [1, 2] (DFT)
enabled us to predict phonon properties [3–7]. Due to its
strong predictability, nowadays, phonon calculation is applied
to studies in various scientific fields as an essential tool.

The formulation of phonons involves a transformation from
describing the potential in terms of the individual atomic dis-
placements to normal modes, which describe collective dis-
placements [8, 9]. In many crystals at modest temperatures,
phonon properties of crystals are often well reproduced in per-
turbation theory, where Taylor expansion of crystal potential
with respect to atomic displacements is truncated at lowest
order terms as a good approximation. As a result, the compu-
tational procedure of the phonon calculation becomes simple
and the practical application is made systematic. This is one of
the reasons that the phonon calculation has become popular in
scientific research. The majority of reported phonon calcula-
tions are limited to the harmonic approximation since it often
provides satisfactory accuracy for the research purposes, and,
in practice it is much less computationally demanding than a
beyond-harmonic treatment.

Crystals for which it is difficult to apply straightforward
perturbation theory may be categorized as anharmonic crys-
tals. Anharmonicity is a ubiquitous phenomenon, that is
related to properties of materials such as thermal expansion,
lattice thermal conductivity, and structural phase transition
[9, 10]. When we study anharmonic crystals, it is import-
ant to know the phonon spectral shapes, for which the har-
monic approximation is insufficient. Recent progress of com-
putational methodologies in anharmonic phonon calculations
[11–14] has enabled us to simulate phonon spectra of anhar-
monic crystals. Many researches on anhamonicity have been
achieved by combining experimental and calculation meth-
ods [15–21]. However, comparison of detailed phonon spec-
tral shapes between experiments and calculations is non-
trivial since high-resolution experimental measurements are
limited.

The purpose of this work is to verify an anharmonic phonon
calculation method employed in this study by experiments and
to establish the systematic computational procedure. Inelastic
neutron scattering (INS) [18, 22] and inelastic x-ray scatter-
ing (IXS) [17, 19] have been employed to investigate anhar-
monic phonons at finite wave vectors as complementary tech-
niques [20, 21]. In the former technique, the relation between
momentum and energy transfer is represented as [10, 23]

∆E=
ℏ2

2mn
(2kf −Q) ·Q, (1)

where ℏ, ∆E, Q, kf, and mn represent the reduced Planck
constant, the energy transfer, the momentum transfer, the
momentum of neutron after scattering, and the mass of a neut-
ron, respectively. This demonstrates that the momentum trans-
fer is always coupled with the energy transfer. This also means
that the energy resolution depends on both momentum and
energy transfers. In the latter case, on the other hand, the
energy transfer is nearly independent of the momentum trans-
fer, which means that the energy resolution is also approxim-
ately independent from momentum and energy transfers [24].
In addition, intensity of background noise is nearly ignored
in IXS spectra. Therefore, IXS experiments were simpler and
more preferable to INS experiments for us to perform the com-
parison of detailed anharmonic phonon spectra between exper-
iments and calculations in wide Q-ω space.

Phonon measurements using INS were reported for KCl
[25] and NaCl [26, 27] at 300K (room temperature). Phonon
frequencies measured in these studies are plotted in figures 1
and 2, for which the phonon frequency values in figure 2
of [27] were sampled using WebPlotDigitizer [28]. Recently,
detailed calculation of phonon band structure of NaCl was
reported by Ravichandran and Broido [29]. They employed
a phonon renormalization approach to treat strong anharmon-
icity in NaCl, and showed good agreement of the phonon fre-
quencies with the measurement by Raunio et al [26].

In this study, we investigate phonon spectral shapes
of the longitudinal-optical (LO) modes of KCl and NaCl
using the IXS measurements and first-principles anharmonic
phonon calculations. In particular, their LO-mode phon-
ons near Γ-points are shown to be strongly anharmonic. In
sections 2 and 3, methods of measurements and calculations
are described, respectively. In section 4, first we discuss about
feasibility of the calculation results against the IXS measure-
ments by the peak positions and shapes of the phonon spectra,
then we analyze the calculated spectral functions in details.

2. Experimental method

The phonon spectra were measured using IXS at the
BL35XU of the SPring-8 synchrotron [30–33]. The energy of
21.747 keV of the beam and Si

(
11 11 11

)
backscattering

setup with energy resolution of ∼1.5meV were used.
The phonon spectra of KCl and NaCl were meas-

ured around the Γ–L path of Q= (3 − u 3 − u 3 − u)
and Q= (3 + u 3 + u 3 + u) with positive u, respectively,
where the points in the reciprocal spaces are represented with
respect to the reciprocal basis vectors of the conventional unit
cell. Their Q-resolutions were ∆Q ∼

(
0.03 0.02 0.04

)
and∆Q ∼

(
0.03 0.03 0.01

)
, respectively. For KCl, those

along the Γ–X path of Q=
(
5− u 1 1

)
were also meas-

ured, and the Q-resolution was ∆Q ∼
(
0.04 0.00 0.04

)
.

Due to the experimental setting, measured Q-points slightly
deviated from the high-symmetry paths for efficient use of
the analyzer array [31–33] and the coordinates are shown
in figures 3–5 along with the measured spectra. Lorentzian
functions were used to determine the peak positions of the
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Figure 1. (Left panel) Phonon spectral function of KCl,
∑

ν Aqν(ω), along X–Γ–L path at 300K. (Right panel) Phonon band structure of
KCl along X–Γ–L path at 300K. The (green) dashed-dotted curves show the renormalized frequencies (Ωqν), the (black) dashed curves
depict the renormalized frequencies shifted by the real part of the self-energy (∆qν(Ωqν)) and the (red) dotted curves show the harmonic
frequencies. The filled circle and diamond symbols show peak positions of the IXS spectra by our measurement and the INS measurement
by Raunio and Almqvist [25], respectively.

Figure 2. (Left panel) Phonon spectral function of NaCl,
∑

ν Aqν(ω), along X–Γ–L path at 300K. (Right panel) Phonon band structure of
NaCl along X–Γ–L path at 300K. The (green) dashed-dotted curves show the renormalized frequencies, (Ωqν), the (black) dashed curves
depict the renormalized frequencies shifted by the real part of the self-energy, (∆qν(Ωqν)), and the (red) dotted curves show the harmonic
frequencies. The filled circle symbols show peak positions of the IXS spectra by our measurement. The filled diamond and square symbols
depict the INS measurements by Raunio et al [26] and by Schmunk and Winder [27], respectively.

phonon spectra by least-squares fitting, and the determined
points are presented in figures 1 and 2.

3. Method of calculation

3.1. Phonon spectral function

Anharmonic phonon calculations were performed in the
stochastic self-consistent harmonic approximation (SSCHA)
[12, 34–40]. There exist several software implementations
of SSCHA. The SSCHA code [40] is the software imple-
mentation of the original SSCHA method. The hiPhive code

[41] has an implementation of a self-consistent harmonic
approximation (SCHA) resembling [34].We employed an iter-
ative force-constants-fitting approach within the framework of
SSCHA which is considered equivalent to the methods repor-
ted in [42, 43] as implemented in the QSCAILD code [42] and
the TDEP code [44–46], respectively.

SCHA force constants are given as

Φlκj,l ′κ ′j ′ =

〈
∂2 V

∂ulκj∂ul ′κ ′j ′

〉
ρ̃Φ

, (2)

where V is the crystal potential and ulκj is the atomic displace-
ment at the lattice point l, atom κ of l, and Cartesian index j.

3
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The angle bracket means average with respect to the density
matrix of harmonic phonons ρ̃Φ, where ρ̃Φ is a function ofΦ at
a temperature T, i.e. equation (2) is a self-consistent equation
at T. Displacements of atoms in direct space are represented by
superposition of phonon normal modes with amplitudes Qqν ,
where q and ν are the wave vector and the band index, respect-
ively. The probability distribution function of each harmonic
phonon mode (q,ν) at T, Pqν(T), is given as [23, 47]

Pqν(T) =
1√

2πσ2
qν(T)

exp

[
−1
2

Q2
qν

σ2
qν(T)

]
, (3)

σ2
qν(T) =

ℏ
2Ωqν

[1+ 2nqν(T)], nqν(T) =
1

eℏΩqν/kBT− 1
,

where kB denotes the Boltzmann constant. Ωqν is the phonon
frequency as the solution of dynamical matrix of Φ in
equation (2). The density matrix ρ̃Φ in equation (2) corres-
ponds to the product of Pqν(T), i.e.

∏
qν Pqν(T).

The third-order force constants with respect to ρ̃Φ are given
as [36, 38–40]

Φρ̃Φ

lκj,l ′κ ′j ′,l ′ ′κ ′ ′j ′ ′ =

〈
∂3V

∂ulκj∂ul ′κ ′j ′∂ul ′ ′κ ′ ′j ′ ′

〉
ρ̃Φ

. (4)

With equations (2) and (4), spectral function of each phonon
mode [36] was calculated from the following form [48]:

Aqν(ω) =
1
π

4Ω2
qνΓqν(ω)[

ω2 −Ω2
qν − 2Ωqν∆qν(ω)

]2
+ [2ΩqνΓqν(ω)]

2 ,

(5)

where ω is the phonon frequency sampled arbitrary in the cal-
culation, ∆qν(ω) and Γqν(ω) denote the real and imaginary
parts of the self-energy of the bubble diagram, respectively,
whose details are written in appendix A.

To compute equations (2) and (4), supercell approach was
used. Finite atomic displacements in supercells were gen-
erated by stochastically sampling normal mode amplitudes
Qqν on the probability distribution functions of Pqν(T) at the
commensurate q-points. Force constants were obtained from
atomic displacements and forces by linear regression [48],
where the forces were calculated using first-principles cal-
culation. More computational details are given in the next
section.

3.2. Computational details

For the conventional unit cell models, experimental lattice
parameters of 6.29 and 5.64Å at 300K for KCl and NaCl
[49], respectively, were used. For the supercell phonon cal-
culation, we employed the phonopy [50] and phono3py [51]
codes. Non-analytical term correction [5, 6, 52] was applied
to dynamical matrices to treat long range dipole-dipole inter-
actions. For force constants fitting, the ALM code [48] was
used. Supercells of 2 × 2 × 2 expansion of conventional unit

cells of KCl and NaCl were used for most of the harmonic
and anharmonic phonon calculations. In addition, 4 × 4× 4
supercells were used for the calculations of the harmonic force
constants to replace harmonic part of the SSCHA force con-
stants calculatedwith the 2 × 2 × 2 supercells, i.e. we approx-
imateΦ of equation (2) byΦ4×4×4 ∼ Φ

(0)
4×4×4 + Φ2×2×2 −

Φ
(0)
2×2×2, whereΦ

(0) denotes the harmonic force constants and
the subscript indicates the supercell size.

For the first-principles calculations, we employed the
plane-wave basis projector augmented wave (PAW) method
[53] within the framework of DFT as implemented in the
VASP code [54–56]. The generalized gradient approximation
of Perdew, Burke, and Ernzerhof revised for solids (PBEsol)
[57] was used as the exchange correlation potential. For PAW
datasets of atoms, 3p electrons for K and 2p electrons for Na
were treated as valence. Static dielectric constants and Born
effective charges were calculated with primitive cells from
density functional perturbation theory (DFPT) as implemen-
ted in the VASP code [58, 59]. A plane-wave energy cutoff
of 500 eV was employed for the supercell force calculations
and 750 eV for the DFPT calculations. Reciprocal spaces were
sampled by half-shifted 4 × 4 × 4 meshes for the 2 × 2 × 2
supercells, half-shifted 2 × 2 × 2 meshes for the 4 × 4 × 4
supercells, and the Γ-centered 8 × 8 × 8 meshes for the prim-
itive cells. For each harmonic force constants calculation,
atoms in 20 supercells were randomly displaced in directions
with a fixed distance of 0.03Å from their equilibrium posi-
tions. The high-frequency dielectric constants (ϵ∞) of KCl and
NaCl were obtained as 2.365 and 2.546, and the Born effective
charges as ±1.129 and ±1.096, respectively.

The SSCHA force constants were obtained by iterating
phonon calculations. Initial phonon calculation was performed
with small displacements (0.03Å) in supercells. At every
iteration step, 20 supercells with random atomic displace-
ments as a batch were generated as given by equation (3) at
300K using force constants that were calculatedwith supercell
displacement-force datasets of up to previous 50 batches (1000
supercells). Then, forces of the supercells with the generated
displacements were calculated using the VASP code. This pro-
cess was repeated 100 times, and we took the last force con-
stants as the converged SSCHA force constants. Details about
the convergence is summarized in appendix B. For the cal-
culation of equation (4), 4000 supercells with random atomic
displacements generated from the SSCHA force constants
according to equation (3) were used for the fitting of third-
order force constants. Commensurate q-points were sampled
for equation (3), which guarantees the generation of real val-
ued displacements in the supercells. To perform systematic
calculations presented above, we employed the AiiDA envir-
onment [60] with the AiiDA-VASP [61] and AiiDA-phonoxpy
[62] plugins. For the calculations of the spectral functions,
self-energies, and weighted joint density of states, the q-points
were sampled on regular grids of 300 × 300 × 300 mesh,
and the phonon frequencies were uniformly sampled at 2001
points from 0meV to about twice the highest renormalied
phonon frequencies.
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Figure 3. KCl spectra measured by IXS at Q-points (see figure 1) and calculated phonon spectral functions of the LO mode at q-points near
the Γ–L path. The (orange) solid curves with broader peaks are the IXS measurements. The (blue) solid and (green) dotted curves show the
calculated spectral functions (Aq,LO(ω)) and those smeared by the Lorentzian function with the 1.5meV scale parameter, respectively. The
q-points of the calculation were chosen from the grid points on the Γ–L path at which their distances from the Γ-point are closest to those of
the measured Q-points. The q-point is represented by q= (u,u,u) with respect to the conventional basis of the Bilbao crystallographic
server [63], where u= 0.5 gives the L-point.

4. Results and discussions

4.1. Phonon band structures

Phonon structures of KCl and NaCl are presented in figures 1
and 2, respectively. The left panels show the calculated spec-
tral functions. The points and curves in the right panels depict
experimentally measured and calculated results, respectively.
The LO-mode frequencies that we measured agree well with
the INS measurements reported in [25–27] for KCl and
NaCl.

The calculated spectral functions of the LO modes near
the Γ-points show side bands due to their strong anharmon-
icity. Except for the LO modes, the spectra show clear peaks.
We can see the peak positions underestimate the experi-
ments systematically. The underestimation is largest for the
LO modes near the Γ-points. However we are satisfied with
the current level of the agreements between the calcula-
tions and experiments since it is expected that this level of
the errors hardly affect the shapes of the calculated spectral
functions.

The three curves in the right panel in each of figures 1
and 2 show harmonic frequencies, Ω(0)

qν , calculated from Φ(0),

renormalized harmonic frequencies, Ωqν , obtained from Φ of
equation (2), and Ωqν shifted by real parts of the self-energies
at Ωqν , Ωqν + ∆qν(Ωqν). By cancellation between the renor-

malizations Ωqν −Ω
(0)
qν and the shifts ∆qν(Ωqν), the har-

monic frequencies Ω
(0)
qν become close to Ωqν + ∆qν(Ωqν)

and show even better agreements with the experiments than
Ωqν + ∆qν(Ωqν) for the LO modes. However, we consider
this is a specific result for KCl and NaCl and not general
tendency.

As shown in the left panels of figures 1 and 2, for the
sharp spectral functions, Ωqν + ∆qν(Ωqν) are expected to
agree well with their peak positions. Near the Γ-point, since
the LO modes exhibit the broad spectral functions, Ωq,LO +
∆q,LO(Ωq,LO) are unable to represent their peak positions.
This is an effect of the strong anharmonicity.

4.2. Comparisons of spectral shapes

The measured IXS spectra and calculated spectral functions
of the LO modes are compared in figures 3–5. The cal-
culated results show the LO-mode contributions only, i.e.
what are presented are Aq,LO(ω). The LO-mode spectra
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Figure 4. KCl spectra measured by IXS at Q-points (see figure 1) and calculated phonon spectral functions of the LO mode at q-points near
the Γ–X path. The (orange) solid curves with broader peaks are the IXS measurements. The (blue) solid and (green) dotted curves show the
calculated spectral functions (Aq,LO(ω)) and those smeared by the Lorentzian function with the 1.5meV scale parameter, respectively. The
q-points of the calculation were chosen from the grid points on the Γ–X path at which their distances from the Γ-point are closest to those of
the measured Q-points. The q-point is represented by q= (2u,0,0) with respect to the conventional basis of the Bilbao crystallographic
server [63], where 2u= 1 gives the X-point.

show the broader peaks near the Γ-points. With increas-
ing distance from the Γ-points, the spectral peaks become
sharper.

The IXS spectra show broader spectral shapes than the cal-
culated spectral functions due to the finite IXS energy res-
olution. To include this effect in the calculations, the spec-
tral functions were smeared by the Lorentzian function with
a scale parameter of the 1.5meV. The smeared spectral func-
tions are also shown in figures 3–5. We can see that general
trend of the IXS spectral shapes are well reproduced by them.
Therefore, we consider that details of the anharmonic spectra
can be discussed from the calculated spectral functions.

4.3. Spectral functions and self-energies

The spectral function Aqν(ω) in equation (5) is obtained from
the renormalized frequency Ωqν and the real and imaginary
parts of the self-energy, ∆qν(ω) and Γqν(ω), respectively. In
this section, the spectral functions of the LOmodes, Aq,LO(ω),
are analyzed using Ωq,LO, ∆q,LO(ω), and Γq,LO(ω) in detail.
Aq,LO(ω), ∆q,LO(ω), Γq,LO(ω), and Ωq,LO at the same

q-points used in figures 3–5 are shown in figures 6–8, respect-
ively. As equation (5) indicates, the spectral functions are
expected to have strong peaks around ω ∼ Ωqν + ∆qν(ω),
which we call main peaks. In these figures, the main peaks are

6
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Figure 5. NaCl spectra measured by IXS at Q-points (see figure 2) and calculated phonon spectral functions of the LO mode at q-points
near the Γ–L path. The (orange) solid curves with broader peaks are the IXS measurements. The (blue) solid and (green) dotted curves show
the calculated spectral functions (Aq,LO(ω)) and those smeared by the Lorentzian function with the 1.5meV scale parameter, respectively.
The q-points of the calculation were chosen from the grid points on the Γ–L path at which their distances from the Γ-point are closest to
those of the measured Q-points. The q-point is represented by q= (u,u,u) with respect to the conventional basis of the Bilbao
crystallographic server [63], where u= 0.5 gives the L-point.

located a few meV below Ωq,LO since∆q,LO(ω) have negative
values near the main peaks.

The spectral functions show other multiple peaks than their
main peaks. These peaks become stronger when Γq,LO(ω)
is larger at ω close to Ωq,LO. This condition is satisfied
at the q-points near the Γ-points. The large Γq,LO(ω) is
mainly the result of energy and momentum conversations
of three phonon scatterings of the class formally denoted
as (q,ω) → (q ′,ων ′) + (q ′ ′,ων ′ ′), which is discussed in
section 4.4.

The distributions of ∆q,LO(ω) and Γq,LO(ω) are presented
in figures 9 and 10 similarly to the left panels of figures 1
and 2, respectively, where Ωqν are superimposed on these
figures instead of Ωqν + ∆qν(Ωqν). The overall distributions
are similar between KCl and NaCl except for their frequency
scales. Each of them is roughly symmetric between the Γ–L
and Γ–X path sides. In the low frequency domains, the distri-
butions are relatively flat mainly because the term (nq ′ν ′ −
nq ′ ′ν ′ ′) in equation (A4) is well cancelled as discussed in
section 4.4. We can see the characteristic distributions in
the vicinities of the highest frequencies of Ωq,LO near the
Γ points, which provides interesting spectral shapes. Large

Γq,LO(ω) are also found at the high frequency domains near
the X-points, however Aq,LO(ω) are less anharmonic since
Ωq,LO are low enough to avoid passing through these (q,ω)
domains.

4.4. Three phonon scattering processes

The imaginary part of self-energy Γλ(ω) in equation (A4)
is determined by detailed combinations of Φρ̃Φ

λλ ′λ ′ ′ and
energy conservations weighted by phonon occupation num-
bers. Due to translational symmetry, Φρ̃Φ

λλ ′λ ′ ′ contains
momentum conservation as represented by ∆(q + q ′ + q ′ ′)
in equation (A1). Like the previous works [51, 64], in this
section, we discuss impacts of the energy and momentum con-
servations of three phonon scatterings by introducingweighted
joint-density-of-states (JDOS). The weighted JDOS N2(q,ω)
is defined by replacing 18 π

ℏ2

∣∣Φρ̃Φ

−λλ ′λ ′ ′

∣∣2 in equation (A4) by
1
N∆(−q + q ′ + q ′ ′):

N2(q,ω) = N(1)
2 (q,ω) + N(2)

2 (q,ω), (6)

7
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Figure 6. Real and imaginary parts of self-energies and renormalized frequencies of KCl at q-points on the Γ–L path. Each panel
corresponds to that in figure 3. The dashed-dotted (green) and dashed (red) curves show the real (∆q,LO(ω)) and imaginary (Γq,LO(ω))
parts of the self-energies, respectively. The solid (blue) curves show the spectral functions (Aq,LO(ω)), that are the same as those in figure 3.
The vertical dotted lines indicate the renormalized frequencies (Ωq,LO). The small arrows in the panel u= 0.123 depict two main peaks that
change their intensity ratio at q-points along the Γ–L path.

where

N(1)
2 (q,ω) =

1
N

∑
λ ′λ ′ ′

∆(−q + q ′ + q ′ ′)(nλ ′ − nλ ′ ′)

× [δ(ω + Ωλ ′ −Ωλ ′ ′) − δ(ω−Ωλ ′ + Ωλ ′ ′)],

(7)

N(2)
2 (q,ω) =

1
N

∑
λ ′λ ′ ′

∆(−q + q ′ + q ′ ′)(nλ ′ + nλ ′ ′ + 1)

× δ(ω−Ωλ ′ −Ωλ ′ ′). (8)

Note that the weighted JDOS is independent from the band
index. In equation (6), N(1)

2 (q,ω) and N(2)
2 (q,ω) mean the

contributions from two different scattering classes as written
formally [65],{

class 1: (q,ω) + (q′,Ωλ′) −→ (q′′Ωλ′′)

class 2: (q,ω) −→ (q′,Ωλ′) + (q′′,Ωλ′′),

respectively. N(1)
2 (q,ω) and N(2)

2 (q,ω) of KCl and NaCl at
300K are shown in figures 11 and 12 in a similar manner to
the right panels of figures 9 and 10, respectively. N(1)

2 (q,ω)

(left panels) show weaker intensities than N(2)
2 (q,ω) (right

panels) due to the term (nλ ′ − nλ ′ ′) in equation (7). N2(q,ω)
exhibit high intensities at higher frequency domains similar
to Γq,LO(ω) by the energy conservation δ(ω−Ωλ ′ −Ωλ ′ ′)
in equation (8). This is considered as the main reason why
the LO modes show strong anharmonicity. To discuss more
details of the LO-mode spectral shapes, Φρ̃Φ

λλ ′λ ′ ′ is necessary,
since Γq,LO(ω) show more q-point dependence than N2(q,ω).
This is attributed to wave-like property of the three phonon
interactions.

4.5. Disconnections of LO-mode branch on Γ–L path

In figures 1 and 2, the LO-mode branches of Aqν(ω)
look disconnected on the Γ–L paths, though the discon-
nection is less clear in NaCl. In each LO-mode branch, a
pair of peaks of Aq,LO(ω) gradually change their intens-
ity ratio as increasing u of q= (u,u,u) on the Γ–L path.
The pair of the peaks of KCl are pointed by small arrows
in the panel of u= 0.123 in figure 6. The peak at lower
frequency side (p1) is a typical main-peak appearing at
ωp1 ∼ Ωq,LO + ∆q,LO(ωp1). The other peak at higher fre-
quency side (p2) reflects spike-like change of ∆q,LO(ω)

8
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Figure 7. Real and imaginary parts of self-energies and renormalized frequencies of KCl at q-points on the Γ–X path. Each panel
corresponds to that in figure 4. The dashed-dotted (green) and dashed (red) curves show the real (∆q,LO(ω)) and imaginary (Γq,LO(ω))
parts of the self-energies, respectively. The solid (blue) curves show the spectral functions (Aq,LO(ω)), that are the same as those in figure 4.
The vertical dotted lines indicate the renormalized frequencies (Ωq,LO).

near ωp2. The frequency of the peak p2 is higher than
Ωq,LO + ∆q,LO(ωp2), and the intensity of Aq,LO(ωp2) comes
from the high-frequency-side tail of the bell-shaped func-
tion centered atΩq,LO + ∆q,LO(ωp2).Aq,LO(ω) sharply decays
moving away from ωp2 since the spike-like ∆q,LO(ω)
increases ω− [Ωq,LO +∆q,LO(ω)] on both sides of the
frequency ωp2.

In figure 6, we can see that the position of the spike-like
∆q,LO(ω) shifts to the lower frequency side as increasing u of
q= (u,u,u). This is seen clearly in the left panel of figure 9 as

a line of the spike-like ∆q,LO(ω) extending from just above
the top of the LO-mode branch (∼25meV) at the Γ-point.
The curve Ωq,LO crosses this line around u= 0.1. At u > 0.1,
the peak p2 grows to become another main-peak by increas-
ing u. In this way, the disconnection of the LO-mode branch
appears. The line of the spike-like ∆q,LO(ω) is found on the
Γ–X path side. However, the disconnection does not appear,
since Ωq,LO does not cross the line. Compared with KCl, the
line of the spike-like∆q,LO(ω) is less clear for NaCl as shown
in figure 10.

9



J. Phys.: Condens. Matter 34 (2022) 365401 A Togo et al

Figure 8. Real and imaginary parts of self-energies and renormalized frequencies of NaCl at q-points on the Γ–L path. Each panel
corresponds to that in figure 5. The solid (blue) curves show the spectral functions (Aq,LO(ω)). The dashed-dotted (green) and dashed (red)
curves show the real (∆q,LO(ω)) and imaginary (Γq,LO(ω)) parts of the self-energies, respectively. The solid (blue) curves show the spectral
functions, that are the same as those in figure 5. The vertical dotted lines indicate the renormalized frequencies (Ωq,LO).

Figure 9. (Left panel) Real (∆q,LO(ω)) and (right panel) imaginary (Γq,LO(ω)) parts of self-energies obtained for the LO mode of KCl at
300K. The (green) dashed-dotted curves show the renormalized frequencies, Ωqν .
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Figure 10. (Left panel) Real (∆q,LO(ω)) and (right panel) imaginary (Γq,LO(ω)) parts of self-energies obtained for the LO mode of NaCl at
300K. The (green) dashed-dotted curves show the renormalized frequencies, Ωqν .

Figure 11. Weighted JDOS of class 1 (left panel,N(1)
2 (q,ω)) and class 2 (right panel,N(2)

2 (q,ω)) of KCl at 300K. The (green)
dashed-dotted curves show the renormalized frequencies, Ωλ.

Figure 12. Weighted JDOS of class 1 (left panel,N(1)
2 (q,ω)) and class 2 (right panel,N(2)

2 (q,ω)) of NaCl at 300K. The (green)
dashed-dotted curves show the renormalized frequencies, Ωλ.

11
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5. Summary

In this study, we measured the LO-mode phonon branches of
KCl and NaCl using IXS at 300K and calculated their spec-
tral functions using the phonon calculation under the SSCHA
method to investigate their strong anharmonicity. The spec-
tral shapes of the IXS measurements and calculations showed
good agreements. From the calculated spectral functions, we
found the multiple peaks of the LO-mode spectra and the
disconnections of the LO-mode branches on the Γ–L paths
in KCl and NaCl, which were unclear in the IXS measure-
ments due to the limited energy resolution. From the calcula-
tions, we analyzed the spectral shapes of the strongly anhar-
monic LO-modes and how the disconnections of the LO-mode
branches appear using the phonon self-energies and renormal-
ized phonon frequencies.
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Appendix A. Phonon self energy

In appendices, the phononmodes (q,ν) and (−q,ν) are abbre-
viated by λ and−λ, respectively. In this appendix, formula of
the phonon self-energy used in this study is presented. Three
phonon interaction strength Φρ̃Φ

λλ ′λ ′ ′ is given as

Φρ̃Φ

λλ ′λ ′ ′ =
1√
N

1
3!

∑
κκ ′κ ′ ′

∑
jj ′j ′ ′

Wλ,κjWλ ′,κ ′j ′Wλ ′ ′,κ ′ ′j ′ ′

×
√

ℏ
2mκΩλ

√
ℏ

2mκ ′Ωλ ′

√
ℏ

2mκ ′ ′Ωλ ′ ′

×
∑
l ′l ′ ′

Φρ̃Φ

0κj,l ′κ ′j ′,l ′ ′κ ′ ′j ′ ′

× eiq
′·(rl ′κ ′−r0κ)eiq

′ ′·(rl ′ ′κ ′ ′−r0κ)

× ei(q+q ′+q ′ ′)·r0κ∆(q+q ′ +q ′ ′), (A1)

where N is the number of primitive cells, and mκ and rlκ are
the atomic mass and position in the primitive cell, respect-
ively. The symbol ∆(q+q ′ +q ′ ′) means 1 if q+q ′ +q ′ ′

is a reciprocal lattice vector, otherwise 0. Wλ,κj is the phonon
eigenvector obtained as the solution of the dynamical matrix of

Φ. The phase factor convention of the the phonon eigenvectors
is based on the same definition of the dynamical matrix as
written in [51].

We write real and imaginary parts of the self-energy as

Σλ(ω) = ∆λ(ω)− iΓλ(ω), (A2)

where

∆λ(ω) =
18π
ℏ2

∑
λ ′λ ′ ′

∣∣Φρ̃Φ
−λλ ′λ ′ ′

∣∣2
×
{[

(nλ ′ + nλ ′ ′ + 1)
(ω−Ωλ ′ −Ωλ ′ ′)p

− (nλ ′ + nλ ′ ′ + 1)
(ω + Ωλ ′ + Ωλ ′ ′)p

]
+

[
(nλ ′ − nλ ′ ′)

(ω+Ωλ ′ −Ωλ ′ ′)p
− (nλ ′ − nλ ′ ′)

(ω−Ωλ ′ + Ωλ ′ ′)p

]}
,

(A3)

and

Γλ(ω) =
18π
ℏ2

∑
λ ′λ ′ ′

∣∣Φρ̃Φ

−λλ ′λ ′ ′

∣∣2
×{(nλ ′ + nλ ′ ′ + 1)[δ(ω−Ωλ ′ −Ωλ ′ ′)

− δ(ω + Ωλ ′ + Ωλ ′ ′)]+ (nλ ′ − nλ ′ ′)

× [δ(ω + Ωλ ′ −Ωλ ′ ′)− δ(ω−Ωλ ′ + Ωλ ′ ′)]},
(A4)

respectively.

Appendix B. Convergence of SSCHA Helmholtz
free energy

SSCHA Helmholtz free energy is considered as a good meas-
ure of convergence of the force constants. The SSCHA Herm-
holtz free energy FΦ is written as [12, 34, 36, 40],

FΦ = F̃Φ −⟨ṼΦ⟩ρ̃Φ
+ ⟨V⟩ρ̃Φ

, (B1)

where F̃Φ and ⟨ṼΦ⟩ρ̃Φ
are the harmonic Helmholtz free energy

and potential energy, respectively, and ⟨V⟩ρ̃Φ
is the potential

energy under ρ̃Φ. F̃Φ is given as

F̃Φ =
1
2

∑
λ

ℏΩλ + kBT
∑
λ

ln
[
1− exp(−ℏΩλ/kBT)

]
. (B2)

⟨ṼΦ⟩ρ̃Φ
is given by equation (A16) of [36] as

⟨ṼΦ⟩ρ̃Φ
=

1
2

∑
lκj,l ′κ ′j ′

Φlκj,l ′κ ′j ′⟨ulκjul ′κ ′j ′⟩ρ̃Φ
(B3)

=
1
2

∑
lκj,l ′κ ′j ′

Φlκj,l ′κ ′j ′

N
√
mκmκ ′

∑
λ

σ2
λ(T)

× W∗
λ,κjWλ,κ ′j ′e

iq·(rl ′κ ′−rlκ), (B4)
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Figure 13. Energy convergences of SSCHA Helmholtz free
energies FΦ (equation (B1)) of KCl (top) and NaCl (bottom) per
primitive cells with respect to iteration step. In each figure, the dots
labeled by SSCHA (B3) and SSCHA (B4) show the FΦ in which
⟨ṼΦ⟩ρ̃Φ are computed following equations (B3) and (B4),
respectively, and those labeled by Harmonic (B2) depict the
harmonic Helmholtz free energies F̃Φ (equation (B2)). The lines
connecting the dots are guides to the eye. The solid and dashed
horizontal lines in each figure are the FΦ computed from 4000
supercells generated using Φ obtained at the last iteration step with
⟨ṼΦ⟩ρ̃Φ by equations (B3) and (B4), respectively.

where the second equation is derived from the displacement
operator:

ulκj =

(
1

Nmκ

) 1
2 ∑

λ

QλWλ,κje
iq·rlκ

=

(
ℏ

2Nmκ

) 1
2 ∑

λ

Ω
− 1

2
λ (âλ + â†−λ)Wλ,κje

iq·rlκ .

Figure 13 shows the calculated values of FΦ of KCl and
NaCl at iteration steps using the 2 × 2 × 2 supercells. In
equation (B1), ⟨V⟩ρ̃Φ

were obtained from electronic total ener-
gies of the supercells with generated finite displacements actu-
ally used to compute Φ relative to those energies without dis-
placements. ⟨ṼΦ⟩ρ̃Φ

were calculated in two ways as given in
equations (B3) and (B4). The values of the former were com-
puted from the displacements same as those used for the com-
putation of ⟨V⟩ρ̃Φ

, and those of the latter were calculated from
phonon frequencies and eigenvectors of Φ. We can see FΦ

with ⟨ṼΦ⟩ρ̃Φ
of equation (B3) is a more stable measure than

FΦ with ⟨ṼΦ⟩ρ̃Φ
of equation (B4). The difference between

them was found to be smaller in KCl than in NaCl. As the ref-
erences, FΦ were also computed using 4000 supercells gen-
erated from Φ obtained at the last iteration step for each of
KCl and NaCl. In KCl, those with ⟨ṼΦ⟩ρ̃Φ

of equations (B3)
and (B4) are equivalent within the energy range of the figure,
and in NaCl, they are distinguishable. This may indicate more
iteration steps are needed for NaCl than KCl. Another attempt
of NaCl calculation with 200 iteration steps was performed
and the result is presented in figure 14. Difference between
FΦ computed using 4000 supercells from equations (B3) and
(B4) is smaller than that in figure 13. This probably indicates
the better convergence of the force constants. However this
minor difference impacted little on the calculation result of
the spectral function shapes.

Figure 14. Energy convergences of SSCHA Helmholtz free
energies of NaCl. The SSCHA iteration was performed twice longer
than that in figure 14. The points and lines show values as explained
in figure 13.
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