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Heteroatom doping has endowed graphene with manifold aspects of material properties and boosted
its applications. The atomic structure determination of doped graphene is vital to understand its
material properties. Motivated by the recently synthesized boron-doped graphene with relatively high
concentration, here we employ machine learning methods to search the most stable structures of doped
boron atoms in graphene, in conjunction with the atomistic simulations. From the determined stable
structures, we find that in the free-standing pristine graphene, the doped boron atoms energetically
prefer to substitute for the carbon atoms at different sublattice sites and that the para configuration of
boron-boron pair is dominant in the cases of high boron concentrations. The boron doping can increase
the work function of graphene by 0.7 eV for a boron content higher than 3.1%. © 2018 Author(s).
All article content, except where otherwise noted, is licensed under a Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/1.5018065

I. INTRODUCTION

Chemical composition modification of materials by incor-
porating additional elements is one of the commonly used
approaches to tune the material properties. To achieve the
desired material properties, not only the optimal composi-
tion but also the spatial distribution of incorporated atoms
is demanded to be discovered. Because of the complexity
introduced by the interplay between structural and chemi-
cal degrees of freedom, the atomic structure search of dopant
atoms in the host material is very challenging, particularly for
the non-diluted doping level.

Graphene, a single layer of sp2-bonded carbon atoms
arranged in a honeycomb lattice, is the most explored repre-
sentative of two-dimensional (2D) materials.1,2 However, the
electrical conduction of pristine monolayer graphene cannot
be switched off because of its zero band gap in the electronic
density of states, limiting the range of potential applications.2,3

The perfectly flat graphene is chemically inert and not of prac-
tical interest in the applications involving chemical reactions.4

To expand the applications of graphene, many efforts have
been made to modify graphene by chemical functionalization,
chemical doping, structure engineering, and so on.2,4–6 Among
these approaches, incorporation of heteroatoms into graphene
is shown to be a versatile method for controllable tuning of its
physical and chemical properties.5–10 Boron (B) and nitrogen
(N) have attracted much great attention for chemical doping
of graphene since they are neighboring to carbon (C) and their
atomic radii are similar to that of carbon.11,12 Compared with
nitrogen, substitutional doping of boron in graphene was pre-
dicted to be more energetically favorable13,14 and found to
exhibit a p-type doping effect.14,15 Recent experiments have
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shown that boron can be embedded in graphene at higher con-
centrations (up to 20%).10,14,16–18 It was also found that the
hexagonal structure exists in boron carbides (BxC1�x), thin
films with B contents less than 0.5.19 For BxC1�x, thin films
with B content at x = 0.25, an ordered layer structure was pro-
posed.20,21 These make boron-doped graphene (B-graphene)
a unique and very attractive material from both fundamental
and practical viewpoints. However, the local structural form
of B-graphene with relatively high B concentration is not
yet well understood. The spatial distribution of doped B in
graphene is strongly affected by the synthesis methods and
conditions. For the epitaxial B-graphene grown by chemical
vapor deposition, the B dopants in graphene can be a pref-
erential substitution of carbon in only one of the graphene
sublattices10,18 and be completely random,22 depending on
the metal substrate used. To understand the energetic stabil-
ity and to find out possible ordered structures of B-graphene,
we carry out a global search for the local structure configu-
rations of the B dopants in graphene with a series of concen-
trations by means of the supercell model and the atomistic
simulations.

In the case of substitutional doping of B for C in defect-
free graphene, the number of possible structure configurations
can be written as Cm

n+m if the symmetry is broken, where n
and m are the numbers of C and B atoms, respectively. It
is evident that the exhaustive search of all possible structure
configurations for multiple B dopants in graphene would be
prohibitive from the efficiency. To search the stable atomic
structures of B-graphene more efficiently, in this work we pro-
pose to use a machine learning approach that utilizes Monte
Carlo tree search,23 which was recently utilized for materials
and chemical design24,25 with a rollout schema depending on
Bayesian optimization (BO).26 Based on the structure search
of B-graphene, we discuss the performance of this proposed
scheme of global optimization.
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The remainder of this paper is organized as follows. In
Sec. II, we briefly introduce the machine learning methods
used for the search of atomic structures of B-graphene. The
details of computation setup are given in Sec. III. The results
for the optimization performance of the machine learning
methods, the stabilities of B-graphene, and the electronic struc-
tures of B-graphene are presented in Sec. IV. The conclusions
are given in Sec. V.

II. MACHINE LEARNING BASED
OPTIMIZATION METHOD

Determination of optimal material structure with cer-
tain quality metrics traditionally depended on the experi-
ence of domain knowledge experts and trial-and-error exper-
iments. Several machine learning-based methods have been
proposed to accelerate this process with as few experiments
as possible.24,27–31 In such methods, the structure prediction
is often formulated as a selection of optimal solution from
a candidates space that maximizes or minimizes a black-
box function (usually the target property).32,33 Experiments
are commonly replaced by simulators such as first-principles
calculations.

Currently available efficient methods such as Bayesian
optimization (BO)26,34 are not scalable enough. Due to its
exceptional performance in computer Go game,23,35 Monte
Carlo tree search (MCTS)23 has recently gained attention in
material design24 offering a superior scalability with efficiency
trade-off.

MCTS employs a shallow search tree where a node is a
possible assignment of an atom into a position in the struc-
ture. Iteratively, the tree expands towards the optimal solution
in 4 steps: selection, expansion, simulation, and backprop-
agation. A full solution is obtained from this shallow tree
using the random rollout (completion) technique in the sim-
ulation step. To increase the MCTS efficiency, we propose
to use Bayesian learning to engineer the rollout24 instead of

the random selection. We briefly discuss this rollout oper-
ation here. See the supplementary material for details on
the proposed method. The source code is freely available at
https://github.com/tsudalab/MDTS.

Bayesian optimization methods maintain a surrogate
model of the black-box function, most commonly Gaussian
process (GP). A pool of candidate S′ is generated at a node
of level p` where each data point represents a full structure
of N positions, with positions p1, . . ., p` being determined
along the path from the root to the selected node and posi-
tions p`+1, . . ., pN being randomly generated. Data points in
S′ are then vectors of binary values (0, 1). If no data point
from S′ is previously observed, GP starts with an initial set
of randomly selected data points from S′. GP is updated
as more data points are observed. An acquisition function
is then used to determine the next optimal solution. Within
computational budget, the selected solutions are returned
(Fig. 1).

III. COMPUTATIONAL DETAILS

To study B-graphene, a supercell constructed by the
4 × 4 extension of the hexagonal unit cell of graphene was
employed and the substitution of carbon by boron was con-
sidered. To avoid the spurious interaction between graphene
layers, a vacuum thickness in the supercell was set to 20.0 Å.
The in-plane lattice constant of graphene supercell was
fixed at 4a0, where a0 = 2.464 Å for the calculated lat-
tice constant of graphene. Figure 2 shows the atomic struc-
ture of the graphene supercell used in the present study.
The number of B dopants was considered from 1 to 10,
which correspond to the boron concentration variation from
3.125% to 31.25%. The number of possible structure con-
figurations for different numbers of doped B atoms in a
4 × 4 graphene supercell is summarized in Table I. Because
of the large number of structure configurations for multiple B
dopants (nB > 4) in graphene, we employed a combinatorial

FIG. 1. Monte Carlo tree search
(MCTS) with Bayesian rollout for
binary atom assignment. MCTS uses a
shallow tree search. At a certain itera-
tion, only partial solution is determined
in the tree. To obtain full solutions,
a pool of full solution candidates is
enumerated. GP is fed with previous
observations if available or initial
random selection (red triangles). An
acquisition function is applied to
determine the next optimal observation
from the pool.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-017891
https://github.com/tsudalab/MDTS
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FIG. 2. The atomic structures of a 4 × 4 supercell of monolayer graphene (a)
without and (b) with one doped B atom.

structure-generation approach for the local-level modeling of
atomic substitutions and partial occupancies in crystals to
reduce the number of potential configurations.36 Our proposed
algorithm is then applied to search the stable structure config-
urations of B-doped graphene. During the structure search,
the atomic positions in each structure configuration were opti-
mized by the limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) method.37 The energy and atomic force
were calculated by the classical force field method,38 as imple-
mented in the ATK-classical simulator of Atomistix ToolKit
(ATK).39,40 The interactions between the atoms in the system
under study were described by the Tersoff bond order poten-
tials developed by Matsunaga et al.41 for C–B and C–C inter-
actions, which have been widely used to study the B-doped
carbon nanostructures. For the top ten structures with lower
energies found by the global search methods for each case
of multiple B dopants, we carried out density functional the-
ory (DFT) calculations to optimize the atomic position and
calculate the energy.

Density functional theory calculations have been per-
formed with the Vienna Ab initio Simulation Package
(VASP).42,43 Perdew-Burke-Ernzerh of (PBE) exchange-
correlation functional44 within the generalized gradient
approximations (GGA) was used in conjunction with the
projector-augmented wave (PAW) method.45,46 A plane wave
basis set with an energy cutoff of 500 eV was used and a
k-point mesh was sampled with a 11 × 11 × 1 Monkhorst-
Pack scheme.47 The criterions for total energy and force
convergence were set to 10�5 eV and 10�2 eV/Å, respec-
tively. Because of the fairly delocalized nature for the defect
states induced by doped boron atoms,48,49 the spin polarization
of B-graphene is energetically unfavorable, which has been
confirmed in the test calculations of spin-polarized DFT.
Therefore, we report here the results from the non-spin-
polarized calculations. Since the well-known underestima-
tion of band gap in the GGA-PBE calculations due to self-
interaction errors, we have also performed the HSE06 hybrid
functional calculations50 to study the electronic structures of
B-graphene in some cases.

IV. RESULTS AND DISCUSSION
A. Obtaining optimal structures

As listed in Table I, the number of symmetry non-
equivalent atomic structures for multiple doped B atoms
considered in a 4 × 4 graphene supercell can reach several
hundred thousands. For such large space of candidate struc-
tures of B-graphene, the atomic structure search was carried
out by the MCTS with Bayesian rollout. We present in Fig. 3
the evolution of lattice energy during the structure search. In
the cases considered here, we can see that the change of lattice
energies for found optimal structures is less than 0.02 eV per
supercell as the search reaches the predefined maximum steps,
which indicates a good convergence for the structure search.
For the cases of search space with thousand candidate struc-
tures, the finding of optimal structure takes 40% of the search
space. But for the case of search space with candidate struc-
tures more than one hundred thousand, the optimal structure
of B-graphene could be found within 2% of the search space.
Therefore, our proposed optimization scheme might be very
suitable for the larger search space that is hard to be treated, for
example, the use of larger supercell size with a kept number
of dopant atoms.

B. Structure stability of boron-doped graphene

To evaluate the stabilities of doped B atoms in graphene,
we calculate their formation energies according to the follow-
ing definition:

∆Eform =
1

mB

[
Et(BG) − Et(PG) − mBµB + mBµC

]
, (1)

where Et(BG) and Et(PG) are the total energies of graphene
supercell with and without B dopants, mB is the number of
doped B atoms, and µB and µC are the chemical potentials
of boron and carbon, which are taken as the total energies
per atom of α-boron crystal and pristine monolayer graphene,
respectively. The formation of single B substitution in the
4 × 4 graphene supercell is about 1.186 eV, which is in good
agreement with the result (1.12 eV) reported in the previous
study.51

It is well known that the honeycomb lattice of graphene
consists of two sublattices, namely, A and B sublattices. To
understand the occupancy preference of multiple-doped B
atoms in graphene, it is necessary to first examine the inter-
action of two B substitutions in graphene. For this purpose,
we calculate the interaction energy of two B substitutions as
defined in the following equation:

∆Eint = Et(2B) + Et(PG) − 2Et(1B), (2)

TABLE I. The number of possible structure configurations for mB (mB = 1, . . ., 10) doped B atoms in a
4 × 4 graphene supercell after merging symmetry.36 The corresponding concentration of doped B in graphene is
cB = mB/32.

mB 1 2 3 4 5 6 7 8 9 10
cB (%) 3.125 6.25 9.375 12.5 15.625 18.75 21.875 25 28.125 31.25
Nconf. 1 8 37 241 1129 5002 17 929 55 817 147 362 338 741
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FIG. 3. The evolution of lattice energy during the structure search of B-graphene by the optimization scheme based on MCTS with Bayesian rollout for the
different numbers of doped B atoms in a 4 × 4 supercell: (a) mB = 5, (b) mB = 6, (c) mB = 7, (d) mB = 8, (e) mB = 9, and (f) mB = 10.

where Et(PG), Et(1B), and Et(2B) are the total energies of
graphene supercells with zero, one, and two doped B atoms,
respectively. The positive (negative) sign of the interaction
energy defined in Eq. (2) indicates two substitutional B dopants
in graphene that repel (attract) each other. It also implies the
increase (decreasing) in the formation energy of two B substi-
tutions with respect to that of single B substitution. In the
4 × 4 graphene supercell considered here, the most stable
configuration of two B substitutions is depicted in Fig. 4(a),
where two doped B atoms occupy the different sublattices,
and the calculated interaction energy is about 0.022 eV. This
indicates that the interaction of two substitutional B atoms
in graphene is repulsive. For two B substitutions at the first
nearest-neighboring (NN) lattice sites (called ortho configura-
tion) in graphene, they show the strongest repulsive interaction
and the corresponding interaction energy is 1.262 eV. For two

B substitutions at the second and third NN lattice sites (called
meta and para configurations, respectively) in graphene, their
interaction energies are 0.507 eV and 0.075 eV, respectively.
As the para configuration of the B-B pair is more stable
than the meta configuration, it has been found in the chem-
ically synthesized B-doped nanographene by using the boron-
containing polycyclic aromatic hydrocarbon (PAH).52,53 The
B-graphene with such less stable meta configuration of B-B
pair was synthesized by chemical vapor deposition (CVD) on
a nickel or cobalt substrate that has strong interaction with
graphene.10,18

The atomic structures for the most stable configurations
of B-graphene at different B concentrations are depicted
in Fig. 4. They have been confirmed in the calculations
that take into account the relaxation of in-plane lattice con-
stants. We have verified their stabilities in the calculations of
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FIG. 4. The most stable structure con-
figurations for doped B atoms in the
4 × 4 supercell of graphene at different
concentrations. From (a) to (i), the num-
ber of doped B atoms changes from two
to ten. The gray and red balls represent
C and B atoms, respectively.

local-density approximations (LDAs) and meta-GGA. The
detailed comparison of the results is given in the supple-
mentary material. The corresponding formation energies of
B substitutions are presented in Fig. 5. In these structure con-
figurations, the para configuration of the B-B pair is dominant,
indicating the substitutional B atoms prefer to occupy dif-
ferent sublattices in the free standing pristine graphene. The
unbalanced sublattice doping observed in experiments may
be attributed to the strong interaction of metal substrate and
graphene.10,18 In particular, it is noticed that the formation
energy of four B substitutions is lower than those of three and
five ones. In the case of eight B substitutions, which corre-
sponds to BC3, its formation energy is lower than those of
seven and nine ones. For the most stable structure configu-
ration of eight B substitutions, as shown in Fig. 4(g), all of
the benzene-like C6 rings are separated by B-B pairs and thus
its aromaticity is very high. This structure configuration has
been proposed in the literature20,21 for the synthesized BC3

compound.

FIG. 5. The formation energy of doped B atom in a 4×4 supercell of graphene
as a function of the number of doped B atoms.

C. Electronic structures of boron-doped graphene

To explore the electronic structure of graphene modified
by B doping, we present in Fig. 6 the total density of states
(DOS) of B-graphenes at a series of B concentrations. It is well
known that the Fermi level (EF) of perfect graphene coincides
with the Dirac point. Because boron has one less electron than
carbon, the B substitution leads to the shifting of EF down into
the valence bands. We also notice that the B doping opens up
a band gap at the Dirac point of graphene, which is supported
by the electrical conductivity measurement of B-graphene.14

In the case of eight B atoms doped in the 4× 4 graphene super-
cell, a band gap is open around the EF and thus this structure
of B-graphene is a semiconductor, which is consistent with
the previous results.54,55 The band gaps of BC3 predicted by
the GGA-PBE and HSE06 hybrid functional calculations in
the present study are about 0.17 eV and 1.38 eV, respectively.
To quantitatively characterize the doping level of carriers, we
present the work function of B-graphene in Fig. 7. The work
function of perfect monolayer graphene predicted by the GGA-
PBE calculations in the present study is about 4.25 eV, which
is in good agreement with the experiment results (4.272 eV for
CVD-grown graphene measured by UV photoelectron spec-
troscopy56 and 4.57 ± 0.05 eV for mechanically exfoliated
graphene measured by a scanning Kelvin probe microscope,57

respectively.). It also agrees well with the previous result
(4.20 eV) of GGA-PBE calculations in the study of Lazar
et al.58 We can see that the boron doping increases the work
function of graphene significantly. The similar trend was also
found in the study of Lazar et al.58 Considering the underes-
timation of band gap in the GGA-PBE calculations, we have
also performed the HSE06 hybrid functional calculations to
check the work functions of perfect monolayer graphene and
B-graphene, which includes the cases of singe B substitution
in 4 × 4 supercell and BC3. The obtained work functions for
these three cases are 4.23, 5.23, and 5.80 eV, respectively.

ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-017891
ftp://ftp.aip.org/epaps/journ_chem_phys/E-JCPSA6-148-017891
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FIG. 6. The total density of states
(DOS) of B-graphene with different
numbers of doped B atoms in a 4 × 4
supercell for their atomic structures
shown in Figs. 2 and 4. The Fermi level
is set as zero and indicated by the dashed
line.

FIG. 7. The work function of B-graphene as a function of the number of
doped B atoms in a 4 × 4 supercell. In the case of two B dopants, the work
function for the metastable structure of B-B pair in the para configuration is
also given.

Depending on the doped B concentration, the GGA-PBE cal-
culations show that the work function of graphene can be tuned
by 0.7 eV–1.0 eV.

V. CONCLUSION

In summary, we have employed the Monte Carlo tree
search (MCTS) with Bayesian rollout to search the stable
structures of B-graphene for the boron concentration up to
31.25%. Compared with the sole use of Bayesian optimiza-
tion, this integrated optimization method shows a superiority
of better scalability. Our results show that in the free-standing
graphene, the doped boron atoms energetically prefer to sub-
stitute for the carbon atoms at different sublattices. For B-
graphene with high boron concentration, the para B-B pairs

are dominant. Because of the repulsive interaction between
boron substitutions in graphene, the doped boron would tend
to be segregated. The doped boron can open a band gap at
the Dirac point of graphene. Particularly in the concentration
of doped B at 25%, namely, BC3, the found stable structure
exhibits semiconducting behavior. We also find that boron dop-
ing can lead to an increase of the work function of graphene
in the range between 0.7 eV and 1.0 eV. Our results would be
very helpful to further explore the application of B-graphene.
In addition, the proposed method can be applied to multiple
atom types assignment problems such as boron and nitro-
gen codoped graphene by allowing more than two branches
in the search tree and using a descriptor based on one-hot
encoding.

SUPPLEMENTARY MATERIAL

See supplementary material for the details on the pro-
posed machine learning method and the detailed comparison
of the results obtained by the different exchange-correlation
functionals in DFT calculations.
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