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Machine Learning-Based Experimental
Design in Materials Science

Thaer M. Dieb and Koji Tsuda

Abstract In materials design and discovery processes, optimal experimental design

(OED) algorithms are getting more popular. OED is often modeled as an optimiza-

tion of a black-box function. In this chapter, we introduce two machine learning-

based approaches for OED: Bayesian optimization (BO) and Monte Carlo tree search

(MCTS). BO is based on a relatively complex machine learning model and has

been proven effective in a number of materials design problems. MCTS is a sim-

pler and more efficient approach that showed significant success in the computer Go

game. We discuss existing OED applications in materials science and discuss future

directions.

Keywords Materials design ⋅ Optimal experiment design ⋅ Machine learning

4.1 Introduction

Materials design and discovery is a fundamental issue in materials science and

engineering. The design of composite material structure, that achieves certain quali-

ty metrics, is often the problem of selecting the optimal solution from a search space

[1, 2]. Traditionally, this process depends on personal experience and expensive

trial-and-error experiments. To accelerate this process, several optimal experimental

design (OED) algorithms have been proposed aiming to reduce the number of req-

uired experiments [3–8]. Figure 4.1 illustrates the materials design process by an

optimal experimental design approach. Given a space of candidates S, OED aims to
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Fig. 4.1 Optimal

experimental design (OED)

algorithm process. For a

predetermined number of

iterations, OED algorithm

selects a candidate set from

the candidate space for

experimentation. The

experimental outcomes are

then exploited for a better

selection in the next iteration

find the best candidate that optimizes a black-box function f (s), whose evaluation

is possible only by an experiment. Starting from a random set of candidate solu-

tions, an OED algorithm iteratively selects a set of candidate solutions for experi-

ments. Experimental results are fed back to the OED algorithm to make further deci-

sions. In many cases, experiments are replaced by simulators such as first-principle

calculation.

In this chapter, we review the applications of two OED algorithms in the materials

science domain. The first is Bayesian optimization (BO) [9], which has been proven

effective in many materials design and discovery studies [1, 2, 6, 7, 10–13]. In BO

methods, a machine learning model is employed to reconstruct the black-box func-

tion f (s). In addition, the uncertainty of prediction is also taken into consideration

in candidate selection. The second is Monte Carlo tree search (MCTS) that showed

exceptional performance in computer Go [14]. MCTS explores a tree-shaped search

space and is more efficient than BO in most cases. In a recent study [8], MCTS was

applied to a Si-Ge alloy design problem and shown to be applicable to large-scale

design problems.

This chapter is organized into four sections. Section 4.2 discusses the Bayesian

optimization method and its applications in materials design and discovery, while

Sect. 4.3 is dedicated to Monte Carlo tree search. Section 4.4 concludes this chapter

with a brief look at other available OED approaches.

4.2 Bayesian Optimization

In machine learning communities, Bayesian Optimization (BO), aka kriging, has

become a very popular tool for optimization problems recently [15–17]. BO is a

sequential design strategy to optimize an expensive black-box function f (s). Deriva-

tives of f are not required. The difference between Bayesian optimization and earlier
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models that used regression [18] is that, BO methods not only consider the predicted

merit of candidates, but also quantify uncertainty as the predictive variance. Based

on this variance, BO can determine where to query f (s) next to achieve maximum

performance. In this section, we will briefly describe a basic BO method, then review

several applications in the domain of materials design and discovery.

4.2.1 Method

Assume that each candidate is represented using a set ofN descriptors. The candidate

set is then described as a set of points S = {s1, ..sm} in an N-dimensional space. We

are looking for the best point sopt ∈ S that maximizes a target black-box function

f (s). It is very common, particularly in materials science and engineering domain,

that the cost of querying f (s) is very high. It is necessary to find the optimal solution

sopt with as few queries as possible.

Bayesian optimization methods maintain a probabilistic model of f (s), most com-

monly Gaussian process (GP) [19] (Fig. 4.2). Initially, a number of candidates are

randomly selected and f (s) is obtained for each of them. GP is trained using these

data and the user obtains a nonlinear regression function and its predictive variance.

In BO, an aquisition function quantifies how promising a candidate is, and depends

both on the regression function and predictive variance. There are three typical

choices: maximum probability of improvement, maximum expected improvement,

and Thompson sampling [9]. The aquisition function is applied to all remaining

candidates and the one with the largest value is selected for next experimentation.

The importance of uncertainty evaluation was investigated by Balachandran et

al. [2]. They aimed to find the optimal design of M2AX family of compounds, where

the interest is focused on elastic properties [bulk (B), shear (G), and Young’s (E)

modulus]. Balachandran et al. compared BO with the selection with predicted val-

ues of support vector machines and showed that using uncertainty lead to better

performance.

Fig. 4.2 Illustration of

Bayesian optimization (BO).
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Fig. 4.3 Si-Ge interfacial structure between two Si leads. In this case, the interface region is made

up of 16 atoms

4.2.2 COMBO: Bayesian Optimization Package

With the increasing popularity of applications of Bayesian optimization to materials

design problems, there was a need to develop an efficient tool to support this pro-

cess. We implemented an open source package for Bayesian optimization in python

(COMBO: COMmon Bayesian Optimization library, https://github.com/tsudalab/

combo) [11]. Thompson sampling, random feature maps and one-rank Cholesky up-

date made it particularly suitable to handle large training datasets. It was shown that

COMBO is more efficient than a GP implementation in scikit-learn (http://scikit-

learn.org). To make it usable by non-experts, COMBO is parameter-free and can

easily be used in various materials design problems. COMBO was first applied to

optimize crystalline interface structures [10], where the aim is to find the best trans-

lation parameters with lowest grain boundary energy. It is reported that more than

50 times speedup was observed in comparison to random design.

4.2.3 Designing Phonon Transport Nanostructures

In a recent paper, Ju et al. [7] studied thermal conductivity in Si-Ge nanostructures.

They applied COMBO to search for maximum and minimum interfacial thermal

conductance (ITC) across all configurations of Silicon and Germanium (Fig. 4.3).

Binary representation was used to describe the position of each atom in the structure:

1 and 0 represent the Ge and Si atom respectively. It is reported that the optimal

solution was reached after exploring only 3.4% of the total number of candidates

(12870).

4.3 Monte Carlo Tree Search

Large-scale problems are not rare cases in materials design and discovery. For exam-

ple, finding the optimal configuration of two elements in a materials crystal structure

with x sites involves exploring a search space with the size 2x. When x = 10, the size

https://github.com/tsudalab/combo
https://github.com/tsudalab/combo
http://scikit-learn.org
http://scikit-learn.org
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of the space is 1024. The space size increases exponentially with the number of sites

x (for x = 20, the size becomes 1048576). Since BO applies an aquisition function

to all candidates, the computational time becomes inhibitive for large x.

The significant success of Monte Carlo tree search (MCTS) [20] in computer Go

game [14] inspired researchers to develop similar approaches in different research

areas including other type of games [21–24]. MCTS is a guided-random best-first

search method that models the search space as a gradually expanded tree. Addition-

ally, MCTS does not involve costly matrix operation like GP, making it very scal-

able for large-scale search spaces. We recently applied MCTS to atom assignment

problems in Fig. 4.3 and showed that MCTS is more efficient in BO in large-scale

problems [8].

4.3.1 Method

Assume a material structure s with p positions. Each position has to be assigned by

an atom from set A. We are looking for the best assignment of length p from the

set of all possible assignments. The evaluation of a structure is given by a black-box

function f (s) corresponding to either an experiment or simulation.

MCTS uses a tree data structure to represent the search space (Fig. 4.4). A node

at level n of the tree corresponds to the assignment of a ∈ A into n-th position. The

maximum depth of the tree is p. A solution is defined by a path from the root to a leaf

node at level p. MCTS constructs only a top part of the search tree and it is expanded

gradually to promising areas. At a node at depth n < p, only a part of the solution

is obtained. To obtain a full solution, MCTS uses a technique called rollout, i.e.,

completing the solution by random assignment of atoms in the remaining positions.

After a full solution is made, f (s) is evaluated and recorded as the immediate merit

of the node that the rollout started.

At the beginning, only the root node exists. The search continues until a pre-

requested number of iterations are finished. In each iteration, MCTS has four steps

(Fig. 4.4): selection, expansion, simulation, and backpropagation. The pseudo-code

of MCTS is shown as Algorithm 1. In the selection step, MCTS starts from the

root and traverses down following the path of the most promising child. Children

of the node are scored with different methods. The most common one is the Upper

Confidence Bound (UCB) score [20],

ucbi =
zi
vi

+ C

√
2 ln vparent

vi
, (4.1)

where zi is the accumulated merit of the node, i.e., the sum of immediate merits of

the all downstream nodes, vi is the visit count of the node, vparent is the visit count

of the parent node, and C is the constant to balance exploration and exploitation. In

the expansion step, one or more child (depending on the implementation) are created
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Fig. 4.4 Monte Carlo tree search (MCTS) for a three atom assignment problem. Atoms are to be

assigned to a set of available positions. The search space is modeled as a decision tree where each

node denotes a possible assignment. MCTS repeats four steps in each iteration: In the selection step,

a promising leaf node is chosen by following the child with the best score. The expansion step adds

a number of children nodes to the selected one. In simulation, a full solution is created by random

rollout for each expanded node. The backpropagation step updates nodes’ information along the

path back to the root for a better selection in the next iteration

under the selected node. For each expanded child, a full solution is obtained through

rollout, then evaluated using f (s) and recorded in the simulation step. Finally, in the

backpropagation step, the node information zi, vi is updated to be used for better

selection in the next iteration.

4.3.2 MDTS: A Python Package for MCTS

We developed a python package of the MCTS algorithm that solves atom assignment

problems [8]. The package named MDTS (Materials Design using Tree Search) is

available at https://github.com/tsudalab/MDTS. MDTS is a parameter-free tool that

automatically sets the only hyperparameter of MCTS algorithm (C) to obtain the

best performance based on the target application. Following a similar idea to [25],

MDTS controls C adaptively at each node as follows:

C =
√
2J
4

(fmax − fmin), (4.2)

where J is a meta-parameter initially set to one and increased whenever the algorithm

encounters a so-called dead-end leaf to allow more exploration. fmax and fmin are the

maximum and minimum immediate merits in downstream nodes.

To investigate the efficiency of MDTS, we compared the application of

MDTS and an efficient Bayesian optimization package [11] to design optimal Silicon-

Germanium (Si-Ge) alloy interfacial structures (Si:Ge = 1:1) in order to achieve both

minimum and maximum thermal conductance [7]. The total computation time was

https://github.com/tsudalab/MDTS
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Start
make root node root ⊳ Each node has 2 values, z: accumulated merit, v: visit count

solutions_set ← ∅
while within number of iterations do

n ← SELECTION(root)
if n is not a maximum depth leaf then

children ← EXPANSION(n)

for all child ∈ children do
solution ← SIMULATION(child)

e ← evaluate solution using experiment or computation

BACKPROPAGATION(child, e)

solutions_set ← [solutions_set, solution]
end for

end if
end while
return argmax(solutions_set)

Finish

function SELECTION(node)

if node has no children then
return node

else
bst_child ← argmax( node.z

node.v
+ C

√
2ln(parent.v)

node.v
) ⊳ parent is the parent of node

return SELECTION(bst_child)

end if
end function

function EXPANSION(node)

for all possible children do
make node child
add child to children of the node

end for
return all children of the node

end function

function SIMULATION(node)

structure ← the path from the root to node
if node is not a maximum depth leaf then

structure ← complete the solution randomly ⊳ random rollout

end if
return structure

end function

function BACKPROPAGATION(node, e)

node.z ← node.z + e
node.v ← node.v + 1
if parent is not None then ⊳ parent is the parent of node

return BACKPROPAGATION(parent, e)

end if
end function

Algorithm 1: Monte Carlo tree search
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divided into design time and simulation time. The former is the time needed by the

OED algorithm to select the next candidates, and the later is the time needed to

query the target function f (s), i.e., time to compute the thermal conductance for the

candidate solution in this particular application. When the number of positions is

smaller than 24, Bayesian optimization showed better efficiency due to its sophisti-

cated machine learning algorithm. However, for larger problems, the design time of

BO gets prohibitively long and MDTS was better in finding the best solution quickly.

4.3.3 Discussion

Use of the rollout is the basis of MCTS. It enables systematic space exploration

without needing to generate the whole search space. In MDTS, the rollout is ran-

dom, but it can possibly be improved using machine learning. For example, Yee et al.

proposed a new MCTS algorithm with machine learning in continuous action

spaces [26], where the UCB score is modified using kernel regression. It should

be possible to apply this approach to materials science as well.

It is important to consider the balance between design time and simulation time.

MCTS methods are most useful when the simulation time is short. The long design

time of a more inefficient machine learning-based approach can appear less prob-

lematic when the simulation time is longer [8].

4.4 Concluding Remarks

Optimal experimental design (OED) methods are gaining more importance recent-

ly in the field of materials science and engineering due to popular need to reduce

the cost of materials design and discovery. In this chapter, we presented two OED

methods and their applications in materials design. Bayesian optimization (BO) is a

well-established method with several successful applications; however, it struggles

with large-scale problems. A new approach using Monte Carlo tree search (MCTS)

has emerged with competitive search efficiency and superior scalability. In the fu-

ture, a hybrid approach combining machine learning and MCTS may achieve even

better design efficiency.

Other available OED methods include evolutionary algorithms such as genetic al-

gorithms [27, 28]. Such methods are scalable, but they have many parameters to tune

(such as crossover and mutation rates). With limited data available a priori, as in most

cases in materials design and discovery, tuning parameters may be difficult. Other

sequential learning (SL) methodologies have been proposed. For example Ling et al.

have implemented a new OED approach based on random forests with uncertainty

estimates [29]. The proposed framework is scalable to high-dimensional parameter

spaces. Wang et al. proposed a nested-batch-mode sequential learning method that

suggests experiments in batches [30]. In order to increase the efficiency of BO, some
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researchers proposed a new surrogate model which combines independent Gaussian

Processes with a linear model that encodes a tree-based dependency structure, which

can transfer information between overlapping decision sequences [31]. In their ap-

proach, Jenatton et al. designed a specialized a two-step acquisition function that

explores the search space more effectively.
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