Element-selective structural visualization for the oxygen-induced surface of Nb(110)

Yuuki Yasui*,1,† Katsuyuki Matsunaga*,2,3 Keisuke Sagisaka,4 and Yoshiaki Sugimoto*1,†
1Department of Advanced Materials Science, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
2Department of Materials Physics, Nagoya University, Furo-cho, Chikusa, Nagoya 464-8603, Japan
3Nanostructures Research Laboratory, Japan Fine Ceramics Center, 2-4-1 Matsuno, Atsuta, Nagoya 456-8587, Japan
4Center for Basic Research on Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

(Received 7 September 2023; revised 2 February 2024; accepted 9 April 2024; published 8 May 2024)

The highest superconducting transition temperature in Nb among elemental materials facilitates applications of superconducting junctions. Nonetheless, its surface forms self-organized oxide structures, which hinders the preparation of well-defined interfaces. We investigated the atomic structure of oxygen-induced Nb(110) surfaces, aiming to define the substrates for such interfaces. The atomic force microscopy and scanning tunneling microscopy measurements visualized two rows of apparently low-lying Nb and three rows of O between Nb chains. An optimized model structure is proposed based on density-functional theory calculations. Analysis of the Bader charge and the density of states clarified how the atoms appear in the microscopies.

DOI: 10.1103/PhysRevB.109.195417

I. INTRODUCTION

Niobium has the highest superconducting transition temperature among elemental metals without the application of high pressure, which promotes applications such as tunneling junctions between a normal metal and a superconductor [1–3] and Josephson junctions between superconductors [4–8]. Though their interfacial conditions are crucial to determine the junction properties [9,10], the affinity of Nb to oxygen burdens the preparation of well-defined interfaces.

The surface of Nb is covered with oxide layers even in ultra-high vacuum (UHV) conditions. The oxide layer cannot be removed with standard cleaning methods [11], because O atoms segregate from the bulk to the surface at annealing [12]. Recently, methods to prepare clean surfaces were reported. Clean surfaces of Nb(110) are achieved by annealing in UHV at 2410°C, that is, only 70°C below its melting point [12]. Hydrogen treatments and additional annealing at 1000°C are required for clean Nb(111) surfaces [13]. Such sophisticated preparation methods, however, may not be preferred for the device fabrication process. We could instead make use of the oxidized surface of Nb for more practical applications by resolving its properties in detail.

The structure of the oxide surface of Nb(110) has been intensively studied. When the crystal is annealed below 145°C in an UHV condition, Nb2O3 dominates in the surface oxide layer, and NbO2 dominates below 300°C [14,15]. NbO is formed with annealing at even higher temperatures. In the range of 927°C–1927°C, no significant change was detected in the surface NbO structure [16]. Scanning tunneling microscopy (STM) observations reported Nb atoms form a quasiperiodic chain structure and are referred to as Nb* chains [12,16–23]. Several models have been proposed so far [16,23,24] based on x-ray photoelectron spectroscopy (XPS) [21,24–27], x-ray reflectivity [15], low-energy electron diffraction [11,14,28,29], Auger electron spectroscopy [14,29], and electron energy loss spectroscopy [14]. These models are constructed by combining the bulk Nb(110) and the bulk NbO(111) structures and by putting Nb adatoms to reproduce the Nb* chain structure. A more recent investigation raised a question on the Nb* adatom structure [30].

Here, we performed noncontact atomic force microscopy (AFM) on NbO/Nb(110) surfaces. The AFM technique is suited for structural identification [31–34]. Nb and O atoms are visualized independently by using different tip states, and the surface atomic arrangements are clarified. A comparison of AFM and STM shows the relative position of Nb and O atoms. A surface model is proposed based on density-functional-theory (DFT) calculations, which is consistent with the AFM and STM observations. The Bader charge and the density of states (DOS) analysis further explain why AFM and STM visualize atoms differently and why the apparent height does not necessarily represent the atomic height.

II. METHODS

Nb single crystals with a purity of better than 99.99% were purchased from MaTecK. Several cycles of Ar+ ion sputtering (1.3 × 10⁻¹³ Pa, 4 keV, 20 min) and annealing at 1200°C were carried out in UHV chambers (~10⁻¹³ Pa) to get rid of impurities. Annealing at 1200°C for 1 min in UHV conditions makes the oxygen-induced surface structure.

AFM measurements at room temperature were performed with a Unisoku custom-built AFM/STM system [35]. Si cantilevers with and without a Pt coating were used after cleaning with Ar+ ion sputtering. Since the tips often contact with the sample surfaces, it is assumed that the tips are covered with materials from the sample surfaces. The resonance fre-
quencies of the cantilevers with and without a Pt coating are around 167 kHz and 157 kHz, and the spring constants are around 38 N/m and 30 N/m, respectively. The oscillation of the cantilever was monitored with an optical interferometer. Measurements at helium temperature were performed with a Unisoku custom-built scanning probe microscope with the Kolibri sensor [36]. The resonance frequency is around 1 MHz, and the effective spring constant is around 1.3 MN/m. All the measurements were operated with the frequency-modulation mode. For the constant-frequency-shift topographic images, the sample bias voltage was adjusted to compensate for the contact potential difference between the tip and the sample. The dI/dV conductance was measured with a standard lock-in technique.

DFT calculations were carried out with the projector augmented wave (PAW) method involved in the vasp program [37,38]. The generalized gradient approximation (GGA) and the exchange-correlation functional parameterized by Perdew, Burke, and Ernzerhof (PBE) [39] were used. In the PAW potentials, 4p, 4d, and 5s orbitals for niobium and 2s and 2p orbitals for oxygen were considered as valence electrons. Electronic wave functions were expanded by plane waves up to a cutoff energy of 400 eV. Atomic positions in the bcc-Nb unit cell and surface supercells (described below) were optimized until their forces became less than 0.1 eV/Å.

For calculations of the Nb(110) surface, periodic supercells containing atomic Nb(110) slabs with a vacuum layer were initially constructed. A thickness of the vacuum layer was set at 1 nm for the structural optimization and the DOS calculation, so as to prevent any spurious interactions between the surfaces at both ends of the slab. In order to obtain structurally optimized Nb(110) surfaces, Nb(110) slabs were initially cut out of bulk Nb. In the structural optimization, Nb atoms in the two atomic layers from one slab surface were fixed and all other atoms were relaxed with the same convergence criterion as that for bulk, described above. From calculations of the different-sized Nb(110) slabs, the slab thickness was determined to be eleven atomic layers so that the Nb(110) interlayer distance between the central Nb layers matches the bulk value. In this case, Brillouin zone integration was performed with a Γ-centered 5 × 5 × 1 k-point mesh [12].

As can be seen in the Results section, a periodic Nb* chain structure was observed. According to the distance between the Nb* chains (around 1.1 nm), different surface supercells were generated by a four-times extension of the minimum unit of Nb(110) toward the [110] direction (see Fig. 4). In this case, a 5 × 1 × 1 mesh was used for k-point sampling.

Additional O atoms in the surface layer were also considered. O atoms were introduced at half of the hollow sites of Nb atoms just below the topmost Nb layer because the thickness of the surface oxide layer was estimated to be 1.4 monolayers [16], 1–2 atomic layers [26], or 500 pm [23,24]. From the total energies of the O-induced supercells with different O configurations as a function of the oxygen chemical potential, the most stable O configuration was determined. Removal of Nb and O atoms from the extended supercells was also assumed to validate the observations, which will be discussed later.

The STM image and conductance spectrum are simulated based on the Tersoff-Hamann method [40,41] implemented in the BSKAN code [42]. The cut-off energy is 400 eV, thickness of the vacuum in the slab is 1.5 nm, the number of k points is 21 × 21 × 1, and the sample bias voltage is −10 mV.

III. RESULTS

The surface morphology was checked with STM to compare the sample with the previous reports. A large field-of-view image shows step and terrace structures [Fig. 1(a)]. The angle between the two steps is around 110°, resulting from the (111) directions of the (110) surface. The Nb* chain structures run almost parallel to the step edges and form domains for both directions of the step edges.

The Nb* chain atoms are resolved in a magnified view as in Fig. 1(b). The chain is constituted of around ten atoms with a chain-to-chain distance of 1.1 nm. In our STM observations, atoms were observed only in the chain structure, and atoms were not clearly observed between the chains. The chain structure was observed for any bias voltage within ±1 V. These features are consistent with the previously reported STM observations [12,16–19,21–23].

AFM observations give further information on the surface atomic structure. Two modes of atomic resolutions were obtained depending on the tip conditions. In Fig. 2(a) a quasiperiodic chain structure is observed, which is constituted of around ten atoms. The distance between the chains is around 1 nm. These values are similar to the Nb* chain structure observed in STM, and thus we consider that Nb atoms are observed in this imaging mode. Furthermore, atoms between the chains are resolved as in the magnified view in Fig. 2(b). Interestingly, an additional two rows of Nb atoms are located at apparently low positions. These atoms have not been revealed in the STM measurements. A line profile highlights its periodicity: one Nb* row and two low-lying Nb rows [Fig. 2(c)]. The difference in the apparent height between the Nb* chain and the lower Nb is merely 20 pm, which suggests that the lower Nb atoms are not located in the...
underlying layer. We refer to these apparently low-lying Nb atoms as Nb-1 and Nb-2.

For a different imaging mode, another structure was visualized at a different area of the sample as in Figs. 2(d)–2(f). We consider that the other elements, namely, O atoms, are visualized. In this visualization mode, the quasiperiodicity is consistent with that for the Nb mode: around 10 atoms in length and 1 nm in width. Importantly, three rows of O form a unit of quasi-repetition, and each row has nearly the same number of atoms. The height in these rows appears within 30 pm, suggesting these rows are located nearly in the same plane.
interpreted as follows. The constant-frequency-shift feedback is maintained in the attractive force region. Each element in the sample is charged in opposite polarity due to the difference in the electronegativity. When the electrostatic force dominates the tip-sample interaction, one of the elements can provide an attractive force depending on the charge state of the tip. Therefore, the tip termination polarity determines which element is to be detected. We consider that a similar mechanism is applied to the NbO/Nb(110) surfaces.

Relative positions of Nb and O atoms are determined by simultaneous measurements of AFM and STM. The frequency-shift images visualize the O atoms [Figs. 3(a) and 3(c)], while the current images represent the position of Nb* chain atoms [Figs. 3(b) and 3(d)]. Positions of Nb* chains are marked with yellow lines in Figs. 3(b) and 3(d). Corresponding pixels are also marked to compare in Figs. 3(a) and 3(c). The Nb* chains appear in the valley between the bunches of three O rows. There is a slight shift (∼70 pm) away from the center of the valley.

Comparison in the Nb mode is shown in Figs. 3(e) and 3(f). These images are taken separately in the same field of view. The positions can be compared by referring to impurities marked with arrows. These impurities are located in between the chains for both AFM and STM images. Thus, the chain structure in Nb-mode AFM detects the same Nb* chains seen in STM.

To summarize the AFM observations, two rows of apparently low-lying Nb atoms and three rows of O atoms are found between the Nb* chains. In previous studies, the surface oxide structure had been constructed by a combination of the bulk Nb(110) and the bulk NbO(111). However, the ideal surface of NbO(111) cannot explain the present AFM observations for the following reasons. Firstly, the bulk NbO(111) structure expects three Nb rows between Nb* chains. Secondly, the number of O atoms in each row is not uniform due to the kagome structure of NbO(111). Thirdly, the Nb* chains were placed on top of the NbO layer as adatoms, but the protrusion may be too high to explain the observation.

IV. DISCUSSION

A simple combination of the bulk Nb(110) and the bulk NbO(111) may not be sufficient for a more realistic model. To get further insight into the O-induced surface structure of Nb(110), we performed DFT calculations of the O-induced Nb(110) supercells extended by four times toward the [111] direction (see Sec. II). The initial states contain O atoms stuffed in the surface layer of Nb(110). Since such a surface is subjected to compressive stress due to oxygen inclusion, removal of pairs of Nb and O in the surface layer was assumed. All possible combinations of removal were calculated, and the most stable atomic structure obtained after structure optimization is shown in Fig. 4. The calculated structure captures the basic periodicity in the AFM observations. The Nb* chains (colored in blue) run along the [111] direction, where the distance between the chains is 1.17 nm. Two Nb rows (colored in green) and three O rows (colored in red and orange) are located between the Nb* chains. Nb atoms are aligned almost parallel to the [111] direction, and O atoms are aligned close
to the [1\overline{1}2] direction. A comparison of the model and AFM images is illustrated in Figs. 5(c) and 5(d).

The height profile of the model can be compared with the line profiles in AFM, as shown in Figs. 5(e) and 5(f). In the AFM observation, three O rows appear in similar heights. In contrast, the model expects that O-2 locates 114 pm and 154 pm higher than O-1 and O-3, respectively. AFM topographic images detect the charge state, and hence the Bader-charge analysis [53], which approximates the charge state of each atom, helps to interpret the observations. We found that O-2 has a smaller charge than O-1 and O-3 (Table I). That reduces the height difference in AFM feedback. On the other hand, the value of the Bader charge alone cannot explain why the Nb+ atoms appear higher in the AFM. We speculate that the Nb+ atoms are exposed to the vacuum, while Nb-1 and Nb-2 atoms are partly covered with O atoms. Thus, the charge of Nb-1 and Nb-2 is screened with surrounding O atoms, leaving the unscreened Nb+ atoms apparently high.

Let us compare the model with the STM observations. STM topographic images detect the DOS integrated from the Fermi level \(E_F \) to \(V_s \), on top of atomic corrugations. Hence, the DOS at \(E_F \) simulates how atoms appear in STM topographic images. We calculated the DOS for the present structure as shown in Table I. The Nb+ has larger DOS than those of Nb-1 and Nb-2, and thus the Nb+ chains appear higher in the STM measurements. Besides, the low DOS of O atoms explains why O atoms are not detected with STM.

The present model is further supported by comparing the observed STM topographic image with a simulated STM image as in Figs. 5(a) and 5(b). Nb+ appears most strongly in the simulated image, as expected from the large DOS at \(E_F \). Nb-2 appears very weakly in the simulated image. This rationalizes the weak signal between Nb+ chains. Nb-1 hardly appears in the simulation, as its low DOS implies.

We calculated the DOS for the present oxide surface model (Fig. 6). The peak structure at \(-450 \text{ mV} \) in the clean Nb(110) surface originates from the Nb 4d\textsubscript{z} orbital. The peak is suppressed in the oxide surface. Figure 6(b) shows the projected DOS for each element at the surface. The DOS near \(E_F \) is mostly contributed from Nb 4d orbitals. O 2\(p \) orbitals appear mainly from \(-7 \text{ eV} \) to \(-4 \text{ eV} \). Figure 7(a) shows a measured tunneling conductance spectrum, which is approximately proportional to the DOS. The observed \(dI/dV \) curve reproduces the previous report [30], where a characteristic peak is obtained at \(-450 \text{ mV} \). The peak is reproduced with a simulation of tunneling conductance at 400 pm above the Nb+ atom [Fig. 7(b)]. The consistency further supports the present model.

In the present model, the quasiperiodic structure including the finite length of Nb+ chains is not obtained because of the limitation in the cell size for the calculation. We consider that the relaxation from the compressive strain coming from extra O inclusion causes the quasiperiodic structure, similar to the case in N-adsorbed Cu(001) surfaces [54]. This may also cause the rotation of Nb+ chains by 5° with respect to the [111] direction as reported in Ref. [23]. This also limits the discussion of the global symmetry of the surface, and hence we cannot make a conclusion about the Nishiyama-Wasserman epitaxial relationship proposed in previous reports [18, 22].

We also discuss the present model by referring to previous reports. Photoelectron spectroscopy studies estimate the ratio of Nb and O is close to 1:1 in the topmost layer [16, 19]. The present model holds this condition. An XPS experiment concluded that there are two oxygen chemical states, chemisorbed oxygen and oxygen entering into NbO\textsubscript{2} clusters, with the ratio of 2 : 1 [21]. We speculate that the O atoms observed in AFM belong to the chemisorbed state and that sparse O inclusions near the surface might belong to the other oxygen state.

V. CONCLUSION

Using the noncontact AFM technique, elements were selectively imaged in atomic resolution in the oxygen-induced surface structure of Nb(110). This suggests that two rows of Nb atoms and three rows of O atoms are located between the

Table I. Parameters obtained for the present structural model.

<table>
<thead>
<tr>
<th></th>
<th>Nb+</th>
<th>Nb-1</th>
<th>Nb-2</th>
<th>O-1</th>
<th>O-2</th>
<th>O-3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bader charge</td>
<td>+0.54</td>
<td>+1.14</td>
<td>+0.74</td>
<td>-1.22</td>
<td>-1.17</td>
<td>-1.24</td>
</tr>
<tr>
<td>DOS at (E_F)</td>
<td>0.96</td>
<td>0.56</td>
<td>0.73</td>
<td>0.06</td>
<td>0.07</td>
<td>0.08</td>
</tr>
<tr>
<td>Relative height (pm)</td>
<td>0</td>
<td>51</td>
<td>35</td>
<td>37</td>
<td>151</td>
<td>-3</td>
</tr>
</tbody>
</table>
FIG. 8. DFT-optimized structural models from different initial states. The total energy for the model in Fig. 4 is -458.19 eV. The total energies are (a) -458.07 eV, (b) -458.16 eV, and (c) -458.11 eV.

Nb* chains. Based on DFT calculations, a surface model is proposed. The Bader-charge and the DOS calculations simulate why the apparent height in AFM and STM does not necessarily represent the atomic height. The present results may pave a way for using the self-organized oxide surface of Nb as well-defined substrates for superconducting junctions.

ACKNOWLEDGMENTS

The authors acknowledge D. Katsube and Y. Adachi for discussion. This work was supported by Grant-in-Aid JSPS KAKENHI Grants No. 22H04496, No. 20H05849, No. 21K18867, No. 22H05448, and No. 22H01950, by the JST FOREST Program (Grant No. JPMJFR203J, Japan), by the Asahi Glass Foundation, and by the Murata Science Foundation.

APPENDIX

Figure 8 gives references for higher energy states obtained from different initial states. Figure 9 presents a conductance curve representing the superconducting gap observed on the oxide surface.

FIG. 9. A dI/dV spectrum showing the superconducting gap observed on the oxide surface. $V_i = -10$ mV, $I_i = -1$ nA, $V_{mod} = 0.1$ mV, $f_{bias} = 617.3$ Hz, $A = 0$ pm, $T = 5$ K, and external magnetic field $\mu_0H = 50$ mT.

[34] A. Liebig, C. Setescak, A. Weindl, and F. J. Giessibl, Structural characterization of defects in the topological insulator Bi$_2$Se$_3$ at the picometer scale, J. Phys. Chem. C 126, 21716 (2022).

