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A B S T R A C T   

We present an up-to-date Monte Carlo simulation of electron backscattering coefficient of beryllium, which is an 
important material in fusion reactor, at an impact energy range of electrons between 100 eV and 100 keV. The 
Mott’s cross section calculated with more accurate scattering potential and a relativistic dielectric functional 
formalism with full Penn algorithm and experimental optical data are used in the modelling of electron elastic 
and inelastic scatterings, respectively. This Monte Carlo simulation modelling enabled us to derive compre-
hensive theoretical values of backscattering coefficient, which are found significantly smaller than the previous 
published experimental data particularly at energies below 10 keV. Simulation of electron backscattering spectra 
was then carried out with and without Auger electron emission, which confirmed that Auger electrons have 
negligible contribution to backscattering coefficient. To validate our simulation results, we have also performed 
calculation for amorphous boron and carbon, while the comparison with the available experimental data shows 
reasonable agreement. Further simulation for carbon and water covered Be sample has revealed that the surface 
contamination in low vacuum conditions with several atomic/molecular layers can drastically alter the mea-
surement values for beryllium at low energies. The low backscattering coefficient values of beryllium are partly 
attributed to the extremely strong forward elastic scattering for low atomic number element. Therefore, we 
recommend to use the here reported backscattering coefficient data of beryllium for applications.   

1. Introduction 

Beryllium is selected as the first wall material in ITER [1] due to the 
following advantages. As a low Z material, it can be compatible with high 
performance core plasma without significant fuel dilution and radiation. 
It is non-reactive with hydrogen isotopes to avoid the tritium retention 
issue. Furthermore, it has good thermal conductivity and oxygen getter-
ing ability [2]. Although beryllium has important application in the fusion 
reactor, there are very limited and old data available for studies of its 
interactions with charged particles, especially electrons, in the incident 
energy range of 0.1–100 keV. Only a few investigations exist for the 
determination of the electron backscattering coefficient [3]. The back-
scattering coefficient is a quantity to characterize the amount of back-
scattered electrons by bombarding a solid surface with an incident 

electron beam. When primary electrons penetrate a material they undergo 
elastic and inelastic collisions during their motion in matter before either 
losing all energies in the bulk or emitting from sample surface. During the 
inelastic collision processes secondary electrons can be generated. 
Empirically one separates the emitted electrons according to their kinetic 
energies and defines them as secondary electrons if their energies are 
below 50 eV and as backscattered electrons otherwise. Denoting the 
backscattering coefficient by η (the number of backscattered electrons of 
energies greater than 50 eV per an incident electron) and the secondary 
electrons yield by δ, the total electron yield is hence the sum of them. 

During the last decades many experiments have been performed to 
explore the general tendency of dependence of backscattering coeffi-
cient on atomic number of the target and incident electron energy. It was 
observed that the backscattering coefficient increases with atomic 
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number at high energies above 10 keV [4–6]. The general behaviour of 
the primary energy dependence of backscattering coefficient was also 
found as [7–9]: a) for low atomic number solids (Z < 20) it decreases 
with increasing of incident energy; b) for high-Z elements (Z > 26) it 
increases with incident energy; c) it is almost constant for intermediate 
value Z-elements [10]. It was also observed that, at low primary energies 
η is surface sensitive [11]. Joy has compiled these historical measure-
ment data into a database for many elemental solids and compounds 
without including uncertainty and judging the reliability [12]. 

For Be sample, Martin et al. had performed experimental in-
vestigations of the energy and angular distribution of backscattered 
electrons at high energies, in the incident energy range between 43.5 keV 
and 124 keV [13]. Reimer and Tollkamp had measured η as a function of 
primary energy for a normal incident beam in a scanning electron mi-
croscope. They have found that η increases with decreasing primary en-
ergy particularly below 5 keV [14]. Bronshtein and Fraiman had 
performed backscattering coefficient measurements up to 4 keV primary 
energy [15]. Shimizu had measured the backscattering coefficients with a 
spherical symmetric electron energy analyser in an ultrahigh vacuum 
(UHV) system, and compared experimental data with his Monte Carlo 
calculations [16]. These measurement data are scattered in a rather large 
range, from 57% difference at 1 keV down to 40% at ~ 10 keV. The only 
available theoretical data were provided by Shimizu who used a Monte 
Carlo simulation technique to calculate backscattering coefficient as a 
function of the incident electron energy above 5 keV [16]. He used the 
stopping power formula of Spencer and Fano [17] in the continuous 
slowing down approximation for the calculation of electron energy loss 
and Rutherford scattering formula for describing electron elastic cross 
section [16], but the approximations of this theoretical framework are 
now known to be poor, particularly at low electron energies [6,18]. 

Monte Carlo method is a powerful theoretical tool widely used for 
study of particle interaction with matter [18–20]. In recent decades we 
have continuously improved Monte Carlo modeling of electron beam 
interaction with solids and surfaces by employing modern knowledge and 
theories of electron scattering in matter. The systematically developed 
Monte Carlo simulation models and methods by Ding’s group (DingMC) in 
different approaches for applications to electron spectroscopies and 
electron microscopies are comprised of two categories: 1. Classical tra-
jectory Monte Carlo (CTMC) simulations, where the simulation of elec-
tron elastic and inelastic scattering in amorphous-like surfaces/solids/ 
thin-films are treated by conventional Monte Carlo sampling techniques 
from respective scattering cross sections, including (a) CTMC-SEM, 
simulation of secondary electrons and backscattered electrons emitted 
from bulk solids as signals in scanning electron microscopy and back-
ground in Auger electron spectroscopy [21–38]; (b) CTMC-3DSEM, 
simulation for complex 3D sample geometries particularly for critical 
dimension scanning electron microscopic imaging [39–49]; [c] CTMC- 
EPMA, simulation of continuous and characteristic X-ray signals in elec-
tron probe microanalysis [50–52]; (d) CTMC-SES, simulation of Auger 
electron and/or X-ray photoelectron signals in surface electron spec-
troscopies [53–56]; (e) CTMC-REELS, simulation of electron elastic peak 
spectroscopy and reflection electron energy loss spectroscopic spectrum 
from surfaces [57–66]; (f) CTMC-RMC, a reverse Monte Carlo method for 
deriving optical constants of solids from reflection electron energy loss 
spectroscopy spectra [67–73]; (g) CTMC-CHARG, simulation of specimen 
charging phenomena in insulators and semiconductors [74–78]; (h) 
CTMC-ATOMIC, simulation for atomic thin layers with substrate [63,66] 
or without substrate, like graphene, particularly for deriving electron 
inelastic scattering mean free path [79–81]; 2. Quantum trajectory Monte 
Carlo (QTMC) simulation for crystalline materials, which combines the 
simulation of Bohmian quantum trajectories for electron elastic scat-
tering/diffraction [82–84] with the Monte Carlo sampling of electron 
inelastic scattering: QTMC-ARSEI, for atomic resolution secondary elec-
tron imaging in scanning transmission electron microscopy [85–87]. 

In this work we employ an up-to-date simulation model of CTMC-SEM to 
study electron backscattering coefficient. This model configuration uses the 

best available scattering potential for the calculation of relativistic elastic 
scattering cross section; in addition, the relativistic form of dielectric func-
tional formulation of electron inelastic scattering cross section in full Penn 
algorithm is adopted. The backscattering energy spectrum and backscat-
tering coefficient from beryllium sample are investigated theoretically at 
electron impact energies between 0.1 and 100 keV with and without the 
Auger electron emission taken into account. Our simulations consider both 
the individual elastic and inelastic scattering of primary electrons and 
include the high energy cascade secondary electron production during 
electron transport inside the bulk beryllium. The primary purpose of this 
work was to try to reduce the uncertainty range of the experimental data 
distribution by a high accuracy Monte Carlo simulation, and especially 
predict the reasonable values at low primary energies below 1 keV where the 
experimental data are rare. However, the simulation has led to a new finding 
of extremely low backscattering coefficient values, particularly below 10 
keV, as compared with the previous experimental data and also with that of 
the closest elemental solids, boron and carbon. While the comparisons with 
experiments in cases of boron and carbon are very reasonable, there is a quite 
large difference between the present calculation and experimental data. The 
present calculation predicts backscattering coefficient values by the lower 
limit of experimental data range at very high primary energies, and even 
becomes much smaller than experimental data with decreasing primary 
energy. By considering the surface contamination very likely to be presented 
in early experiments the difference between experimental observation and 
theoretical calculation can be explained. The reason for such very low 
backscattering coefficient values for beryllium has been analysed to be 
attributed to the especially strong forward elastic scattering of beryllium 
atoms, and electron scattering mean free paths. 

2. Monte Carlo model 

In our simulation both the elastic and inelastic scatterings of primary 
electrons and also the secondary electron production during transport of the 
electrons inside beryllium are taken into account. Details of the calculation 
procedure are described elsewhere [27,32], here the outline of our calcula-
tion procedure is briefly introduced while we mainly emphasis on the new 
feature of this up-to-date CTMC-SEM model. 

Elastic cross section 

For the elastic scattering of electrons, we used the Mott’s differential 
cross section [88], 

dσe

dΩ
= |f (θ) |2 + |g(θ) |2 (1)  

where f(θ) and g(θ) are the scattering amplitudes and can be calculated 
with the partial wave expansion method by solving Dirac equation, 

f (θ) =
1

2ik

∑∞

l=0

{
(l + 1)

(
e2iδ+ℓ − 1

)
+ l

(
e2iδ−ℓ − 1

) }
Pℓ(cosθ) (2)  

g(θ) =
1

2ik
∑∞

ℓ=1

{
− e2iδ+ℓ + e2iδ−ℓ

}
P1

ℓ(cosθ) (3)  

where δ+l and δ−l are spin up and spin down phase shifts of the ℓth partial 
wave, respectively; Pℓ(cosθ) and P1

ℓ(cosθ) are the Legendre and the first 
order associated Legendre functions, respectively. 

The scattering potential used in the present model is expressed as, 

V(r) = Vst(r)+Vex(r)+Vcp(r) (4)  

where Vst is the electrostatic potential, Vex is the electron exchange po-
tential and Vcp is the correlation-polarization potential. The electrostatic 
potential for the interaction between an electron and the target atom is 

Vst(r) = − e[φn(r) + φe(r) ] (5)  

where φn and φe are respectively the components of nucleus and the 
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Fig. 1. Electron differential elastic scattering cross section as a function of scattering angle at different energies for: (a) beryllium, (b) boron and (c) carbon. 
Comparison for all the three elements at the energies of: (d) 0.1 keV, (e) at 0.5 keV and (f) 5 keV. 
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electron cloud of electrostatic potential, 

φn(r) = e
(

1
r

∫ r

0
ρn(r

′

)4πr′2dr′

+

∫ ∞

r
ρn(r

′

)4πr′ dr′

)

(6)  

φe(r) = − e
(

1
r

∫ r

0
ρe(r

′

)4πr′2dr′

+

∫ ∞

r
ρe(r

′

)4πr′dr′

)

(7)  

where ρn is the nuclear charge distribution and ρe is the electron charge 
distribution of the target atom. A Fermi distribution is used for the 
determination of the nuclear charge distribution [89], 

ρn,F(r) =
ρ0

exp[(r − Rn)/z ] + 1
(8)  

where Rn = 1.07 × 10− 13A1/3 (cm) and z = 5.46× 10− 14 (cm), A is the 
atomic mass (amu) of the element. The constant ρ0, which is twice the 
proton density at r = Rn, is to be determined by normalization. The most 
accurate electron densities available for free atoms are obtained from 
self-consistent relativistic Dirac-Fock (DF) calculations. The numerical 
DF densities calculated by the multiconfiguration DF program of 
Desclaux [90] are used here for determination of the electron charge 
distribution. 

The Furness-McCarthy exchange potential [91] is used for the elec-
tron exchange potential: 

Vex,FM(r) =
1
2
[E − Vst(r) ] −

1
2
{
[E − Vst(r) ]2 + 4πa0e4ρe(r)

}1/2
(9) 

When the projectile is far from the atom, the polarization potential 
energy can be approximated by means of the Buckingham potential, 

Vcp,B(r) = −
αde2

2
(
r2 + d2

)2 (10)  

where αd is dipole polarizability of the target atom and d is a phenome-
nological cut-off parameter that serves to prevent the polarization po-
tential from diverging at r = 0. The experimental values of the atomic 
dipole polarizabilities from Ref. [92] are usually used in Eq. (10). Mit-
tleman and Watson [93] proposed an expression for the cut-off parameter, 
d4 = 1

2αda0Z− 1/3b2
pol, where Z is the atomic number and bpol is an adjust-

able energy-dependent parameter, b2
pol = max{(E − 50 eV)/(16 eV),1 }. 

Perdew and Zunger [94] proposed a parameterization of the correlation 
potential: 

Vcp(r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

−
e2

a0
(0.0311lnrs − 0.0584 + 0.00133rslnrs − 0.0084rs), rs < 1;

−
e2

a0

0.1423 + 0.1748r1/2
s + 0.0633rs

(
1 + 1.0529r1/2

s + 0.3334rs
)2 , rs⩾1.

(11)  

where 

rs =
1
a0

[
3

4πρe(r)

]1/3

(12)  

is the radius of the sphere that contains (on average) one electron of the 
gas, in units of the Bohr radius a0. A more accurate correlation- 
polarization potential combines the long-range polarization potential 
(Eq. (10)) with the correlation potential Vcp(r) obtained from the local- 
density approximation (LDA) which is expressed as [95], 

Vcp,LDA(r) ≡
{

max
{

Vco(r),Vcp,B(r)
}
, r < rcp;

Vcp,B(r), r⩾rcp.
(13)  

where rcp is the outer radius at which Vcp(r) and Vcp,B(r) cross. All the 
calculation of elastic cross section are performed by the Fortran 77 code, 
ELSEPA [96]. 

Fig. 1 shows the primary electron energy and scattering angle 
dependent elastic cross sections of Be. Generally, with increasing inci-
dent energy the elastic cross sections are decreasing. The highest elastic 
cross sections are in forwards angles. Then the elastic cross sections 
decrease rapidly with the increasing scattering angle. We note that at 
low primary energies, the elastic cross sections increase above 900, 
showing the importance of the electron backscattering at low impact 
energies. 

Fig. 1(d) also shows the variation of electron elastic cross section 
with scattering angles and material nature. It is observed that elastic 
cross section for lower atomic number element Be is higher than the 
higher atomic number elements, B and C. These variations strongly 
affect the results of backscattering coefficients. 

The integration of the differential cross section over total solid angles 
gives us the total elastic cross sections as, 

σe =

∫
dσe

dΩ
dΩ = 2π

∫ π

0
sinθ

{
|f (θ) |2 + |g(θ) |2

}
dθ (14) 

Fig. 2(a) shows the total elastic cross sections as a function of energy 
for the simulated materials i.e. Be, B and C. The total elastic cross section 
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Fig. 2. (a) Total elastic scattering cross section and (b) elastic mean free path as functions of energy for five materials, beryllium, boron and carbon allotropes (glassy, 
amorphous and graphite). 
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for the energy lower than almost 250 eV is found lower for the heavier 
element C, however, at the higher energy, this variation becomes 
reverse. In order to compare with electron inelastic mean free path 
(IMFP) λin, we also plot in Fig. 2(b) the electron elastic mean free path, 
λe = 1/naσe, where na is atom number density given in Table. 1, for five 
materials, i.e. beryllium, boron and carbon allotropes (glassy, amor-
phous and graphite), considered in simulation. 

Inelastic cross section 

For the description of the electron inelastic scattering processes, we 
used the dielectric function formalism with which the specific electronic 
excitations a particular sample can be considered. In this model, the 
differential inverse inelastic mean free path (DIIMFP) for moving elec-
trons in a material is given as: 

d2λ− 1
in

d(ħω)dq
=

2γ2

1 + γ
1

πa0E
Im

{
− 1

ε(q,ω)

}
1
q

(15)  

where γ = 1+E/
(
m0c2) is the relativistic correction factor, m0 the mass 

of electron, m0c2 the static energy of an electron. The coefficient, 
2γ2/(1 + γ), in Eq. (15) is due to the relativistic effect; ε(q,ω) is the 
complex dielectric function of medium as a function of energy loss ħω 
and momentum transfer ħq for characterizing the electronic excitation; 
a0 is Bohr’s radius and λin is the electron inelastic mean free path (IMFP). 
The term Im{ − 1/ε(q,ω) } is known as the energy loss function (ELF) 
which determines the probability of inelastic scattering events. Penn had 
suggested an algorithm, the full Penn algorithm (FPA), for the extension 
of the electron energy loss function from the optical limit of q → 0, 
Im{ − 1/ε(q = 0,ω) }, into the (q,ω)-plane, Im{ − 1/ε(q,ω) } [97]. Using 
the Lindhard dielectric function εL

(
q,ω;ωp

)
, the ELF can be written as: 

Im
{

− 1
ε(q,ω)

}

=

∫ ∞

0
g
(
ωp

)
Im

{
− 1

εL
(
q,ω;ωp

)

}

dωp (16)  

where g(ω) is the expansion coefficient, and it is related to the optical 
ELF, Im{ − 1/ε(0,ω) }, according to the following equation: 

g(ω) = 2
πω Im

{
− 1

ε(0,ω)

}

(17) 

It was shown that this approach yields closer simulation results to the 
experimental data, either backscattering coefficient or the energy dis-
tribution of electrons, than the single-pole approximation (SPA) [32] by 
which Im

{
− 1/εL

(
q,ω;ωp

) }
is simplified as a Dirac δ-function along 

the plasmon dispersion line [23]. 
From Eq. (16) the energy loss distribution and IMFP can be obtained 

respectively by performing the integrations: 

dλ− 1
in

d(ħω) =
∫ q+

q−
dq

d2λ− 1
in

d(ħω)dq
(18)  

λ− 1
in =

∫ E− EF

0

dλ− 1
in

dω dω (19)  

where the integration limits, ħq± =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m0E(2 + E/(m0c2) )

√
±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
m0(E − ħω)(2 + (E − ħω)/(m0c2) )

√
, are obtained from the energy and 

momentum conservations. Tanuma et al. have performed extensive 
calculation of IMFP for nonrelativistic electrons [98–101] and relativ-
istic electrons [102–104]. Recently a machine learning technique is 
employed for predicting the IMFP and improving empirical formulation 
[105]. 

According to the ELF as shown by Fig. 3, the dominant contribution 
of the energy loss originates from the electronic excitation around 
several tens eV, and particularly all these elemental materials (Be, B and 
C) demonstrates a strong plasmon peak around 18–28 eV. For carbon the 
peak position and intensity varies with the crystalline form: the peak 
position of (π + σ) plasmon is 20 eV for glassy carbon, 24.8 eV for 
amorphous carbon and 28.3 eV for graphite. In addition, there is a weak 
π plasmon around 5.4–6.9 eV for carbon. Fig. 3 also shows the sharp K- 
shell ionization edges around hundred eV, which will play a significant 
role when the Auger process is taken into account during the simulation. 

To check the accuracy of the ELFs used, we applied two well-known 
sum rules, the perfect screening sum rule (ps-sum rule) and the oscillator 
strength sum rule (f-sum rule) [113]. The f-sum rule Zeff is given by, 

Zeff =
2

πΩ2
P

∫ ωmax

0
ωIm

{
− 1

ε(ω)

}

dω (20)  

where ħΩP =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
4πnae2/m

√
. For a very large value of ωmax, expectation 

value of Zeff must be atomic number Z, the total number of electrons per 
atom or molecule. 

The ps-sum rule Peff can be obtained from the Kramers-Kronig rela-
tion as [114,115]: 

Peff =
2
π

∫ ωmax

0

1
ωIm

{
− 1

ε(ω)

}

dω+Re
{

1
ε(0)

}

(21)  

where Re{1/ε(0) } = 0 for conductors. The expectation value of Peff is 
unity in the limit of ωmax→∞. 

Fig. 4 shows the calculated results of f-sum rule and ps-sum rule for 
beryllium (Z = 4), boron (Z = 5) and carbon allotropes (Z = 6). For Be 
the corresponding limit values are Zeff = 3.96 and Peff = 1.05, 
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in the range of 0.02–300 eV and from Henke et al. [107] in the range of 0.3–30 
keV for Be, from Prieto et al. [108] in the range of 0–80 eV and from Henke 
et al. [107] in the range of 0.08–30 keV for B, from Abril et al. [109] in the 
range of 0–200 eV and from Henke et al. [107] in the range of 0.2–30 keV for 
amorphous C, from Venghaus [110] in the range of 0.02–40 eV and from Henke 
et al. [107] in the range of 0.05–30 keV for graphite C, from Hagemann [111] in 
the range of 0.0001–30 keV for glassy C and atomic scattering factor was used 
in 30 keV-100 keV [112] for all the simulated materials. 

Table 1 
Mass density ρ and atom number density na for five elemental materials, i.e. 
beryllium, boron and carbon allotropes (glassy, amorphous and graphite), where 
NA is Avogadro constant and M is atomic weight.  

elements ρ(g/cm3)  na = NAρ/M(1023 atoms/cm3)  

Be  1.85  1.236 
B  2.34  1.3034 
C (glassy)  1.80  0.9024 
C (amorphous)  2.10  1.0528 
C (graphite)  2.25  1.1280  
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respectively, which are quite close to the nominal values of 4 and 1. 
Accordingly, the relative errors of sum rules for Be are 1.3% and 5%, 
respectively. In the previous work of Shinotsuka and Tanuma et. al 
[102] these errors for Zeff and Peff are 2.4% and 6.6% for Be, respec-
tively. We can conclude that our ELF has enough accuracy for accurate 
Monte Carlo simulation for Be. While for boron and carbon, there are 
larger deviations from expectation values, which are listed in Table 2. 

Fig. 5(a) shows the comparison on the calculated IMPFs between Be, 
B and C. For Be, our calculated IMPF agrees very well with Shinotsuka 
et al. [102] in the energy range of 1–104 eV. The graphite demonstrates 
smaller IMFP values, i.e. stronger electron inelastic scattering proba-
bility, above 100 eV as compared with glassy and amorphous carbon. 
This is due to the higher intensity and larger energy values of plasmon 
peaks of graphite as shown by Fig. 3, while the sum rules indicate that 
the intensity of ELF is overestimated for graphite. 

The electron stopping power is the energy loss travelled per unit 

distance due to inelastic scattering, S = − dE/dx, which was widely used 
in the early Monte Carlo simulations in the continuous slowing-down 
approximation. The universal Bethe stopping power equation is writ-
ten as [116,117], 

S = 785
Zρ
AE

ln
(

1.166E
J

)

(in eV/Å) (22)  

where J is the mean ionization energy of the target atoms (in eV) and is 
given by [118,119], 

J =

{
11.5Z, Z⩽12;

9.76Z + 58.5Z − 0.19, Z⩾13. (23) 

However, this stopping power presents nonphysical negative values 
at low energies; several extending formulations have been proposed 
[120–122]. On the other hand, the electron stopping power can be 
derived from the dielectric theory [23,123]: 

S =

∫ E− EF

0
ω dλ− 1

in

dω dω (24) 

Fig. 6 shows the comparison of stopping powers for Be and C allo-
tropes between the present data and the results from other sources 
[12,116,117,120–123]. In this comparison, the mean excitation energy 
of Be and graphite is set respectively as 60 and 80 eV [119]. For both Be 
and carbon cases our results agree well with Shinotsuka’s results [123]. 
Particularly, the present stopping powers of graphite agree well with the 
experimental data [12], while other theoretical or empirical expressions 
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Fig. 5. (a) Electron inelastic mean free path and (b) the ratio of electron inelastic mean free to elastic mean free path, as functions of electron energy for all the 
simulated materials. 

Table 2 
Relative errors of sum rules for five elemental materials, i.e. beryllium, boron 
and carbon allotropes (glassy, amorphous and graphite).  

elements Zeff (%)  Peff (%)  

Be  1.3  5.0 
B  − 8.0  − 10.0 
C (glassy)  − 5.3  0.4 
C (amorphous)  − 16.0  − 5.4 
C (graphite)  5.0  11.0  
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show certain differences. 
The simulations of the backscattered electron spectra were carried 

out with and without the Auger electron emission [55,56] taken into 
account. If the energy loss is less than the binding energy of the corre-
sponding inner-shell (i.e. K-shell for Be), ħω < EB (where EB is the 
binding energy of the inner-shell presented in the optical ELF), then a 
secondary electron is assumed to be excited from the Fermi sea by 
transferring ħω energy from the primary electron to a valence electron 
of energy with the excitation probability being proportional to a joint 
density of states of free electrons 

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
E0(E0 + EF)

√
. If ħω > EB, the sec-

ondary is excited from the inner-shell and has kinetic energy of ħω − EB. 
Detailed description of the calculations can be found in Refs. [28,32]. In 
addition, the relaxation of the excited atom may proceed via two paths: 
the emission of an Auger electron or the emission of a photon. The sum 
of the corresponding Auger transition probability, PA, and the corre-
sponding fluorescence transition probability, PX, must be 1. The Auger 
transition probability, i.e. Auger channel parameter PX

A, for any Auger 
channel from level X, is given by [124], 

PX
A = 1 − Z4/

(
Z4 + Z4

0

)
(25)  

where Z is the atomic number of an element, and Z0 = 32.4, 89.4, 155.9 
and 300 for X = K, L, M and N, respectively. If ħω > EB, Auger electron 
with the energy of 98 eV for Be will be excited with a certain probability 

( PX=K
A ). 
After undergoing multiple elastic and inelastic scattering collisions 

inside the sample some electrons will reach back to the surface and only 
part of them can escape if the following condition is satisfied: 

Ecos2β > U0 (26)  

where β is the angle between the electron moving direction and the 
surface normal, the inner-potential, U0, is the sum of work function and 
Fermi energy. This condition arises from the fact that the target-vacuum 
interface has an energy barrier to be overcome by the escaping electron. 
The electron emission probability from the surface of the material is 
given by the quantum mechanical transmission function as [18], 

T(E, β) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

4
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − U0/Ecos2β

√

[
1 +

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − U0/Ecos2β

√ ]2, if Ecos2β > U0;

0, otherwise.

(27)  

3. Results and discussion 

We have performed first the Monte Carlo simulation of the energy spectra 
of backscattered electrons for mono-energetic primary beam incident on an 
ideally flat Be surface. For each primary energy we used 1x108 primary 
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Fig. 8. Comparison on the electron back-
scattering coefficients as functions of pri-
mary energy for (a) beryllium, (b) boron 
and (c) carbon (in different forms), be-
tween the present Monte Carlo simulation 
and experimental data. (d) A comparison 
on the Monte Carlo simulated backscat-
tering coefficients for carbon between the 
present simulation and other calculation 
results. (e) A comparison on the present 
Monte Carlo simulation for all of the 
simulated materials, and with Reuter’s 
formula for 20 keV. (f) A comparison on 
electron backscattering coefficients be-
tween the experimental data of beryllium 
and Monte Carlo simulation for carbon 
contaminated beryllium surface, which is 
covered by amorphous carbon at different 
numbers of atomic layers. (g) A compari-
son on electron backscattering coefficients 
between the experimental data of beryl-
lium and Monte Carlo simulation for water 
adsorbed on beryllium surface, which is 
covered by amorphous water at different 
numbers of atomic layers. (h) A compari-
son on the Monte Carlo simulated back-
scattering coefficients between the 
absorbed amorphous carbon and water 
layers on Be surface.   
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electron trajectories during a simulation. Fig. 7 shows the simulated back-
scattered electron energy spectra of beryllium at the incident angle of 00 with 
respect to the surface normal for several incident electron energies. The 
simulations were carried out without and with the Auger electron emission 
taken into account in Fig. 7(a) and 7(b), respectively. In order to smooth the 
simulated spectra and present finite width of the elastic peak, the convolu-
tion has been performed by using a Gaussian function with the standard 
deviation of 1 eV. We can see clearly the enhanced contributions in the 
spectra due to the Auger peak around 100 eV compared to the peakless 
structure in the spectra when the Auger process was neglected. Below the 
elastic peak there are multiple plasmon peaks corresponding to the plasmon 
peak of 18 eV observed in ELF of Be (Fig. 3). The log–log plot indicates the 
tendency of intensity variation with the primary energy. The highest elas-
tically backscattered electron intensity is observed for the lowest incident 
electron energy. The backscattering coefficient is the area of the spectra; with 
increasing primary energy the spectra intensity reduces while the energy 
region expands, so backscattering coefficient may not monotonically change 
with primary energy. 

Counting number of electrons in Fig. 7 according to their emission 
energy and dividing by the number of incident electrons, we can obtain 
the backscattering coefficient η. Fig. 8(a)-8(c) shows the comparison on 
the primary energy dependence of backscattering coefficients, η

(
Ep
)
, of 

elemental solids, Be, B and C, with the available experimental data. It 
can be seen that η first increases relatively rapidly with primary energy 
and then decreases slowly. The maximum η is found around 330 eV. The 
present results in Fig. 7 are displayed in an extended energy range for 
the linear relationship of η

(
Ep
)
̃lnEp as given in Ref. [125]. 

In theoretical point of view, the present simulation, combined the best 
available Monte Carlo technique with the best available ELF, is expected to 
result in the much more accurate backscattering coefficients than previous 
theoretical data. From central limit theorem it was expected that the Monte 
Carlo simulation would produce the theoretical data falling within the range 
of experimental data distribution, as in the case of previous study for Cu [30]. 
But quite surprisingly we have found that, in Fig. 8(a), the simulation yields 
the backscattering coefficient values for Be much smaller than the previously 
reported experimental data, particularly than the Bronshtein’s data [15] at 
low primary energies below 1 keV, and reach the lower limit of experimental 
data distribution range above 10 keV [14–16,126–128]. 

To explore the reason for this difference between the simulation and 
experiment, we first take the Auger process into consideration in the simu-
lation. However, as indicated by Fig. 8(a) that the contribution of Auger 
process to backscattering coefficient is negligible. Then we have performed 
calculations also for the elemental materials having the nearest atomic 
numbers, i.e. boron and carbon, to validate our Monte Carlo simulation. 

For the close atomic number elements, boron and carbon are 
believed to have quite the similar η

(
Ep
)

curve shape as well as the close 
values as beryllium. Fig. 8(b) compare the present calculated results 
with the available experimental [8] and simulated [129] results for B. 
Our simulation agrees very well with those data above 5 keV. Fig. 8(c) 
shows the comparison between present calculated results with the 
available experimental data [8,15,127,128,130–134] for C. But for 
carbon the situation is rather complex because there are different 
structural forms of a carbon solid having varied density values. Fig. 8(c) 
shows that the experimental data measured by different researchers on 
carbon are very different. The main reason for this is considered to be 
due to the sample preparation, where the information about the sample, 
especially the form and the density of the sample, was not given in the 
literature in most cases. Below 2 keV Sternglass’s data values [131] are 
very low while Bronshtein’s data values [15] are rather high, and El- 
Gomati’s data values [133] are moderate and are almost constant be-
tween 300 eV and 5 keV. El-Gomati et al. [133] further demonstrated 
that as expected the surface cleaning by ion bombardment alters the η 
values very slightly since the contamination is mostly hydrocarbons. 

Therefore, we have performed calculations for three typical carbon al-
lotropes with the known density values given in Table 1. Fig. 8(c) shows that 

graphite has the lowest backscattering coefficients and amorphous carbon 
has the largest values, while the glassy carbon presents the intermediate 
backscattering coefficient values which agree excellently well with 
Bronshtein’s experimental data [15] at low primary energies below 1 keV 
and are quite close to other experimental data at higher energies. It is also 
interesting to note from Table 1 and Fig. 8(c) that the graphite has higher 
density but lower η values than glassy carbon, which should not be realistic. 
This is because, on the one hand, the crystalline form affects the electronic 
excitation as displayed by ELF in Fig. 3. On the other hand, the sum rules are 
strongly underestimated for boron and amorphous carbon indicating the 
underestimation of inelastic cross section, and are strongly overestimated for 
graphite indicating the overestimation of inelastic cross section. Fig. 5 shows 
that graphite has the smaller IMFP, and also the ratio λin/λe, as compared 
with glassy and amorphous carbon. Therefore, in Monte Carlo simulation 
electrons suffer much more inelastic events and less elastic scattering events 
in graphite than in glassy carbon. This explains why the simulated η values 
are lower for heavier carbon (graphite) than the lighter glassy carbon and 
amorphous carbon. Because the ELF used for glassy carbon has quite satis-
factory sum rule values, the simulated backscattering coefficients for glassy 
carbon should be much more reliable than amorphous carbon and graphite. 
Then, the simulation in agreement with Bronshtein’s data [15] in the lower 
energy region below 1 keV and other experimental data in the higher energy 
region above 5 keV is quite reasonable. 

Fig. 8(d) also illustrates the comparison with other reported Monte 
Carlo simulations on carbon [129,135–139] by using different simulation 
models and codes, mostly employed the stopping power equation in the 
continuous slowing down approximation for electron inelastic scattering. 
But this approximation is believed to be much poorer than the present 
individual inelastic scattering simulation based on a dielectric functional 
formalism, which describes the specific electronic excitation channel in a 
material rather than the simple Z-dependence in stopping power equa-
tion, particularly considering the fact that the Bethe stopping power 
equation is invalid at low energies and one has to introduce the modified 
mean ionization energy value. Depending on different approaches to 
stopping power equation, some of these codes yielded extreme low η 
values. e.g. by NISTMonte [137] and Geant4 [139] codes, while others 
presented extreme high values at low energies [20]. 

Furthermore, Fig. 8(e) compares our simulated values with those 
calculated from Reuter’s empirical fitting formula for high energy back-
scattering coefficients [140],η = − 0.0254 + 0.016Z − 1.86× 10− 4Z2 +

8.3× 10− 7Z3, is given at 20 keV for Be, B and C. Our present simulation 
also agrees well with the formula for B and C, and slightly smaller for Be. 

Looking at experimental data solely, an obvious character of 
Bronshtein’s data [15] for Be and C in comparing with others is that the 
η
(
Ep
)

curve has a maximum around several hundred eV but not 
monotonously increasing when primary energy Ep is reduced. The ten-
dency agrees well with the present calculation. The clue from this 
observation is that the reason for the uncertainty involved in experi-
mental data can be partly accounted for. Experimentally the effects of 
surface roughness and cleanness existed in all experiments can affect the 
obtained results more or less. Like aluminum, beryllium is easy to be 
oxidized. Moreover, the presence of a surface carbonaceous layer on the 
specimen surface may also have a significant influence. The measure-
ment performed without ultrahigh vacuum condition and ion beam 
sputtering would inevitably involve surface contamination due to re-
sidual gases containing hydrocarbon, carbon dioxide, oxygen and water 
molecules on a surface [141]. By vacuum baking and electron beam 
irradiation these adsorbed molecule species may change their structure 
or even dissociate into carbon, hydrogen, oxygen and even silicon atom 
species. Carbon, oxygen and silicon atoms have a large effect for 
increasing the η value of bulk beryllium. It would be quite reasonable to 
consider that the higher η values of experimental data than our calcu-
lation come mainly from surface contamination. The Drescher’s [126] 
and Reimer’s [14] data were measured in a scanning electron micro-
scope without in situ surface cleaning procedure, and the samples 
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include electropolished metals, evaporated films and mechanically 
polished specimens. It is then not surprising that their data defines the 
upper limit of experimental data distribution range of beryllium. Shi-
mizu had performed the measurement in an ultrahigh vacuum with an 
argon ion bombardment of the sample [16], and his data are lower than 
that of Reimer at high energies and approaches the data of Reimer when 
primary energy is lowered down to 1 keV. The sample property was not 
described in the Neubert’s experiment [127]. Bronshtein et al. had 
prepared pristine beryllium surface by vacuum deposition of thin 
beryllium layers of various thicknesses onto a platinum substrate, and 
the target was heated to a high temperature for degassing [15]. The 
sample cleanness in this experiment explains why the Bronshtein’s data 
are much lower than others. 

Therefore, the surface cleanness can be one of the most responsible 

reasons of the disagreement between our calculation and experimental 
results. Because the physical properties, e.g. optical constants, of these 
complex adsorbates is generally unknown, we will consider in this work 
the contaminates made of amorphous carbon and water. Amorphous 
carbon is the dominate contamination ingredient as experimentally 
found, whose electrical properties has been measured by X-ray photo-
electron spectroscopy [142] and whose optical data are available. For 
water its optical data are also available in the photon energy range of 
1.24 × 10− 7 − 3 × 104 eV [36], while its optical data in the energy range 
of 30 keV-100 keV can be determined from the atomic scattering factor 
of H and O [112]. Therefore, we have performed another simulation for 
a bulk Be solid whose surface is either covered with an amorphous 
carbon or water layer with varying thickness. The simulation method for 
this contamination layer covered sample uses CTMC-ATOMIC, which is 
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basically the same as our previous Monte Carlo simulation of reflection 
electron energy loss spectrum for carbon contaminated sample by a 
surface excitation model [63], the difference is only that the present 
Monte Carlo model as described above is just a bulk excitation model 
because here we are not interested in weak surface excitation features 
near the elastic peak. The simulation results shown in Fig. 8(f) & 8(g) 
indeed indicate the trend of increasing the value at low primary energies 
below 1 keV by absorption of carbon layer and water layer, respectively; 
two carbon layers or one water layer are most likely existed in 
Bronshtein’s sample [15]. This simulation explains very well part of the 
experimental data. Furthermore, additional existence of residual oxygen 
and silicon atoms on beryllium surface from decomposition of trisilox-
anes actually will further enhance the contamination effect and even at 
high primary energies because their atomic numbers are greater than 
carbon. Hydrogen atoms will slightly weaken the commination effect 
because of the smaller atomic number and elastic scattering cross section 
compared with that of carbon. It has been also suggested by El-Gomati 
et al. that great care is needed in surface preparation at low primary 
beam energies for accurate η determination [11]. 

To understand the mechanism leading to the Z-dependence of 
backscattering coefficients in more detail, we consider that the electron 
penetration spatial region, i.e. the interaction volume, may present some 
useful information. Fig. 9 shows the distributions of backscattered 
electron intensity on the maximum penetration depth at primary en-
ergies of 0.5 keV and 1 keV for three elemental solids. In the deep 
interior of the solid electrons have no enough energy to escape from the 
surface to be backscattered electrons. Therefore, the larger distribution 
range and smaller mean depth value estimated from the distribution for 
the lighter elements and at the higher primary energies indicate the 
lower η values. Fig. 10 demonstrates the electron trajectory spatial dis-
tributions for three elemental solids. The colour scale from red to blue 
shows the intensity of the electron trajectory spatial distribution from 
high value to low value. The intensity is normalized by the number of 
the incident electrons. The contour lines in Fig. 10(d) represent the 
normalized intensities having values of e− 1, e− 2 and e− 3, for different 
degrees of attenuation according to natural logarithm. The diffusion rate 
can be seen from these contour lines. The broad distribution in hori-
zontal direction represents the larger scattering angles in electron elastic 
scattering events and hence the larger η values. This spatial distribution 
is determined by the combination effect of differential elastic scattering 
cross section (Fig. 1), elastic mean free path (Fig. 2(b)) and inelastic 
mean free path (Fig. 5(a)) while the latter two are related to material 
density. Cross section for electron elastic scattering with atoms depends 
on Z, but not monotonically. Fig. 2(a) shows that at higher energies, 
cross section is larger for the heavier element (C) than the lighter 
element (Be), and at lower energies it is reversed; the transition happens 
around 300–400 eV, which coincides with the energy Ep for the 
maximum η. But after considering the density factor, the behaviour of 
elastic mean free path λe is not a simple relation of Z, e.g. solid carbon 
has different forms and densities. The density also affects the value of 
inelastic mean free path λin simultaneously. Therefore, instead of 
considering the Z-dependence only from λe one has to consider the ratio 
λin/λe (Fig. 5(b)). The greater λin and smaller λe, the more elastic colli-
sions than inelastic collisions and, hence, the larger the value of η. But, 
as it can be seen in Fig. 5(b) that this ratio is bigger for Be than C below 
300–400 eV. Therefore, we must consider electron differential scattering 
cross section. For the lighter element Be, its forward elastic scattering is 
much stronger than the heavier element C; then electrons undergo more 
frequent small angle scattering in Be than in C. In fact, all these factors, i. 
e. total and differential scattering cross sections (both elastic and in-
elastic), together contribute to the smaller η values of Be. 

We have also calculated backscattering coefficients as functions of 
incident angle and emission angle. Fig. 11 shows the incident angle 
dependence for Be at several primary energies, and the comparison with 
experiment. The η value increases with the incident angle, defined as the 

angle of electron beam with respect to the surface normal. This is 
because at lower incident angles, most of electrons are going deeper 
inside the materials and are more difficult for them to escape back from 
the material surfaces. The comparison of the simulation with the Neu-
bert’s experimental data [127] at incident energies of 20, 40 and 60 keV 
all fit very well in Fig. 11(b), where the Drescher’s experimental data 
[126] for 25 keV incident energy are also displayed. 

As results of our Monte Carlo simulations we can also evaluate the 
emission angular distributions of the backscattered electrons. Fig. 12 shows 
the simulated angular distributions of back scattered electrons at different 
incident angles and primary energies. Other than the total yield of back-
scattered electrons in Fig. 11, this figure displays how the emission angular 
distribution changes with the incident angle. Because beryllium is a light 
element and forward scattering is strong, then the emission maximum ap-
pears in the forward angular region, but not symmetrical about surface 
normal. The angular position for the maximum shifts with incident energy. 

4. Conclusions 

In this work, we have presented a Monte Carlo simulation of the electron 
backscattering coefficient of Be, B and C (glassy, graphite and amorphous) at 
impact energy range between 0.1 keV and 100 keV. Both the high energy 
cascade secondary electrons and Auger electrons produced during the 
transport of the incident electrons inside the bulk beryllium were taken into 
account. This up-to-date CTMC-SEM modelling uses the Mott’s cross section 
calculated with more accurate scattering potential and a relativistic dielec-
tric functional formalism with full Penn algorithm and experimental optical 
data. Sum rule checks indicate that, beryllium and glassy carbon have good 
sum rule values and the simulation of backscattering coefficients for them 
should be reasonable; while boron and amorphous possess an under-
estimated sum rule and graphite has overestimated ones, hence, the calcu-
lation of backscattering coefficients for them would tend to be overestimated 
and underestimated, respectively. The simulation results show that the 
Auger electrons contribute negligibly to the backscattering coefficient. For 
beryllium the simulation results are found well below experimental data at 
low energies and approaches the lower limit of the experimental data dis-
tribution range at high energies above 10 keV. Further simulations for carbon 
or water absorbed on beryllium surfaces indicate that a contamination with a 
thickness of one or two atomic/molecular layers can largely increase the 
backscattering coefficient of beryllium below 1 keV. Therefore, the early 
experimental data measured either in bad vacuum conditions and/or 
without previous ion-sputter cleaning of the surface are likely to be over-
estimated. The very low values of the backscattering coefficients for extreme 
low-Z elements (Be and B) are partly attributed to the strong elastic forward 
scattering, while previously it was assumed that the backscattering coeffi-
cient is dominated by the total cross sections of elastic and inelastic scat-
tering. We believe we have derived the presently most accurate 
backscattering coefficients for beryllium and glassy carbon among all 
available theoretical and experimental data. We highly recommend to use 
these data in applications at least until further accurate experimental data for 
clean Be surface become available. Both reliable experimental and theoret-
ical benchmark results need to be established in future. 
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6. Appendix A: uncertainty analysis 

Quantification of the computed data quality has been assessed by uncertainty. Recently the estimation of the uncertainty of the computer simulated 
results is becoming an important issue [143,144]. The sources of uncertainty for electron scattering calculations have been considered in Ref. [144]; 
following the general consideration on the uncertainty classification, the expression for the combined standard uncertainty [145] of the simulated 
backscattering coefficient can be expressed here as: 

u2
simulation = u2

modelling + u2
numerical + u2

specimen (A1)  

where the three terms are due to physical modelling, numerical calculation and specimen parameters. 
The uncertainty due to numerical calculation mainly originates from two parts, i.e. statistical fluctuation and the general computation uncertainty: 

u2
numerical = u2

statistical + u2
computation (A2) 

The statistical fluctuation term is given by ustatistical∝1/
̅̅̅̅
N

√
, where N is the number of samples, i.e. the number of incident electrons here, which 

can be omitted in this work because 1×108 primary electron trajectories have been used in a simulation. The general computation uncertainty term, 
ucomputation, is usually caused by the truncation error and the finite precision of computations with floating-point numerals. It has been shown that the 

incorrect interpolation process between the tabulated elastic cross section values can cause even larger effect, an obvious deviation on the simulation 
results [11]. All these factors have been carefully considered in our CTMC-SEM code and this uncertainty term is also negligible. 

The specimen term, uspecimen, is caused by the uncertainties of the parameters used for describing the physical properties of the specimen, such as, 
mass density, work function, Fermi energy etc. These parameters are usually well defined for most of materials, and particularly, electron back-
scattering is not sensitive to work function. While some exceptions do exist, for example, the density of amorphous carbon has a rather large value 
range in between 1.4-3.0 g/cm3 [146,147], which varies with the ways of production. The carbon layer covered on the Be specimen in the experiment 
is amorphous, whose density should be related to the particular experimental condition rather than a fixed value. As ELF is also related to the mass 
density, while it is known for amorphous carbon only for the density of 2.1 g/cm3, which is the value we used for calculations of bulk amorphous 
carbon and carbon contaminated beryllium surface. Of course, the denser the amorphous carbon is the stronger the contamination effect will be. As for 
clean Be, the specimen term of uncertainty, uspecimen, is negligible. It can be understood from our discussions given above, the change of the η value by 
contamination in a certain experiment should be attributed to the experimental uncertainty but not to the effect of theoretical simulation. 

The uncertainty term due to physical modelling, umodelling, is considered to be the most important term. It is composed of two parts here as, 

u2
modelling = u2

elastic + u2
inelastic (A3)  

where uelastic and uinelastic represent the uncertainties involved in a particular modelling of elastic and inelastic scattering, respectively. The Mott’s 
cross section and dielectric functional theory (FPA) are regarded as the most accurate models for the description of electron elastic and inelastic 
scattering, respectively, up to now (see Appendix-B for a comparison with several other other approaches). However, the inputs to the calculations of 
Mott’s cross section and IMFP, i.e. the scattering potential and the ELF, respectively, may still contain some uncertainties. 

The deviation of ELF can be estimated by the errors of sum rules (see Table 2), which confirm that the uinelastic term is negligible for beryllium and 
glassy carbon. On the other hand, the scattering potential may have an impact on the calculated Mott’s cross section and, hence, the simulation results 
of backscattering coefficient. In ELSEPA code the details for the calculation of elastic cross section are specified by the input arguments which are listed 
in part in Table A1 for the arguments, MNUCL, MELEC, MEXCH and MCPOL with their detailed description about the options [96]. A label “abcd” is 
used to denote the scattering potential, i.e. “MNUCL=a”, “MELEC=b”, “MEXCH=c”, and “MCPOL=d”. Note that the nuclear charge distribution will 
affect the calculated elastic cross section only for projectiles with kinetic energies higher than 50 MeV [96]. In this work, “MNUCL=3” is used and we 
will only focus on the influence of options for electron distribution model (MELEC), electron exchange potential (MEXCH) and electron correlation- 
polarization potential (MCPOL). Then totally 48 (4×4×3) different combinations of scattering potentials have been employed to calculate the un-
certainty range of the elastic cross section. 

Fig. A1(a) shows the range of total elastic scattering cross section as a function of electron energy as determined from 48 different scattering 
potentials. The “3412” curve is the total elastic scattering cross section used in present work, while the grey area represents the maximum error range 
calculated based on all other scattering potentials for free Be atom by using ELSEPA code [96]. Potential “3200” will lead to the smallest total elastic 
scattering cross section, and the potentials “3111”, “3121” and “3131” will lead to the maximum ones. Fig. A1(b) shows the corresponding back-
scattering coefficient by using different Mott’s cross sections shown in Fig. A1(a). As the full range from minimum to maximum values are considered 
the error is within 100% confidence limits. It can be seen that even with the largest elastic cross section, the calculated backscattering coefficients for 
pure Be are still much lower than the experimental data. This fact indicates that the uncertainty involved in the present Monte Carlo modelling has less 
effect to the conclusions made. 
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7. Appendix B: comparison with other models 

In addition to the models adopted in this work, i.e. the Mott’s cross section and dielectric functional approach (FPA), there are some other 
theoretical models or approaches used for the description of electron elastic and inelastic scattering in a Monte Carlo simulation. Here we select several 
typical combinations of modelling [50] to investigate the sensitivity of backscattering coefficient to models [45]. Due to its simple analytical form, the 
screened Rutherford cross section had been widely used to describe elastic electron-atom collisions in the early years. The screened Rutherford 
differential scattering cross section is expressed by 

dσ
dΩ

=
Z2e4

4E2(1 − cosθ + 2β)2 (A4)  

where β is the atomic screening parameter, and is given by β = 2.61Z2/3/E where E is in eV [148,149]. 
On the other hand, the continuous slowing down approximation (CSDA) with the use of stopping power formula, either Bethe’s equation, Eq. (22), 

or the empirically modified expression [120], has been also widely used in a Monte Carlo modelling of electron inelastic scattering for various cal-
culations including backscattering coefficient [150]. Fig. B1 illustrates the comparison on the electron backscattering coefficients of beryllium with 
different models for electron elastic and inelastic scattering. Here the stopping power in CSDA approach is obtained from our present FPA modelling as 
shown in Fig. 6. It is very clear that the use of screened Rutherford formula overestimates the backscattering coefficient, mostly due to the incorrect 
description of differential cross section, and, the CSDA approach underestimates the backscattering coefficient. 
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Fig. A1. Ranges of (a) total elastic cross section and (b) backscattering coefficient for beryllium for 100% confidence limits as determined from different scat-
tering potentials. 

Table A1 
part of the input arguments in the calculation of elastic cross section by ELSEPA code. For more details, please refer to Ref. [96].  

Argument Values Description 

MNUCL  Nuclear charge distribution model  
1 Point nucleus (P).  
2 Uniformly charged sphere (U).  
3 Fermi distribution (F).  
4 Helm’s uniform-uniform distribution (Uu). 

MELEC  Electron distribution model  
1 Thomas-Fermi-Molière distribution (TFM).  
2 Thomas-Fermi-Dirac distribution (TFD).  
3 Dirac-Hartree-Fock-Slater distribution (DHFS).  
4 Numerical Dirac-Fock distribution (DF), read from the database files. 

MEXCH  Electron exchange potential  
0 No exchange potential.  
1 Furness-McCarthy potential (FM).  
2 Thomas-Fermi potential (TF).  
3 Riley-Truhlar potential (RT). 

MCPOL  Correlation-polarization potential  
0 No correlation-polarization potential.  
1 Buckingham potential (B).  
2 Local-density approximation (LDA).  
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[68] H. Xu, B. Da, J. Tóth, K. Tőkési, Z.J. Ding, Absolute determination of optical 
constants by reflection electron energy loss spectroscopy spectra, Phys. Rev. B 95 
(2017), 195417. 
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