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This paper discusses the recent progress in electron inelastic mean free paths (IMFPs) calculations with the dielectric 

response function and optical energy loss function (ELF) as key parameters. For most materials, the IMFP values calculated 
using various algorithms show good agreements with each other in the energy region above 300 eV; however, a large 
difference exists in the energy region under 200 eV. The energy dependencies of IMFPs calculated from optical ELFs can 
be expressed using the modified Bethe equation for energy regions between 50 eV and 200 keV; the material dependence 
of IMFPs can be expressed by the TPP-2M equation. For IMFP calculations, the treatments and evaluations of the electron 
exchange effect, the effect of energy gap in the energy loss function, and the associated integral region remain important 
issues that will need to be addressed in the future.  
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1. Introduction 

Information on electron inelastic scattering in solids is 
required in various fields, from surface analysis with Auger 
electron spectroscopy (AES) and X-ray photoelectron 
spectroscopy (XPS), to thin film analysis using X-ray 
absorption fine structure (XAFS), radiation physics, 
radiation transport, and transmission electron microscope 
(TEM). The most important and fundamental parameter for 
applications is the electron inelastic mean free path (IMFP). 
In surface analysis, IMFP is a good indicator of surface 
sensitivity. 

IMFP, λ,	is simply related to the total cross section for 
inelastic scattering σ  and the number of atoms per unit 
volume in the solid N, 

  
λ = 1

σ𝑁   
 ,                                                         (1) 

In JIS K-0147(2017) 1 , IMFP is defined as "average 
distance that an electron with a given energy travels between 
successive inelastic collisions". In actual theoretical 
calculations, IMFP is determined from the inelastic 
scattering cross section using Equation (1). 

In surface analysis, IMFP is not only a physical quantity 
that expresses surface sensitivity when analyzed by AES or 
XPS, but is also closely related to electron effective 
attenuation length (EAL) and mean escape depth (MED), 
which are frequently used in actual applications such as film 
thickness measurement. Usually, these parameters are 
derived from the IMFP values (See Reference 10).  
Therefore, there have been many studies on the calculations 
and measurements of IMFP. 

In this paper, I will summarize the progress of IMFP 
calculations based on the dielectric function model, focusing 
on progress since 2000. I would also like to clarify the 
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current status and issues. The results of research on IMFP up 
to 1999 have been summarized appropriately in the review 
by Powell-Jablonski 2. 

 

2. IMFP calculations 

2.1 Overview of IMFP calculations using the dielectric 
function model 

IMFP is now commonly calculated from the energy loss 
function (ELF) of the material, the so-called dielectric 
function model. In the energy regions of ≤500 keV, the 
differential cross section σ!" in inelastic scattering is given 
by the relativistic quantum theory, and under the Born 
approximation, the differential cross sections (DCS) for 
scattering per atom is given as3,4,5 

 

d2𝜎𝑖𝑛
d𝑊d𝑄

 ≈ 2π𝑒4

𝑚𝑒𝑣2

1 + 𝑄/𝑚𝑒𝑐2

𝑄(1 + 𝑄/2𝑚𝑒𝑐2)
2

πΩ𝑝
2

Im (
−1

ϵ(𝑄, 𝑊 ))
,    (2) 

where W, Q, 𝑚𝑒, 𝑣, 𝑐,Im(−1/ϵ),  and Ω𝑝  represent the 

energy loss, recoil energy, electron mass, electron velocity, 
light velocity, energy loss function, and plasmon energy, 
respectively.  

When this equation uses atomic units (𝑚𝑒 = 𝑒2 = ℏ = 1), 

Q is replaced with momentum transfer q, and W is replaced 

with ω (= ℏ𝜔), it becomes6 

𝑑2𝜎𝑖𝑛

𝑑𝜔𝑑𝑞
≈ 2

𝜋𝑁𝑣2 Im [
−1

𝜀(𝑞, 𝜔)]
1
𝑞

, (3) 

Therefore, if Im[−1/𝜀(𝑞, 𝜔)] for target material is known, 

IMFP can be computed through Equation (1). That is,  

λ(𝑇 )−1 = 1
π𝑇 ⋅ 𝐹 (𝑇 ) ∬ Im [

−1
ε(ω, 𝑞)]

1
𝑞

𝑑𝑞𝑑ω,       (4)
𝐷

 

where 𝐹(𝑇)  represents the correction coefficient of the 

relativistic effect. Integral domain D is determined from the 

maximum and minimum energy loss, and the maximum and 

minimum kinematically permissible momentum transfer. 

2.2 IMFP calculation algorithm 

A major issue in IMFP calculations using a dielectric 
function is determining the energy loss function Im[−1/
𝜀(𝑞, 𝜔)]. Research has focused on this challenge for the past 

20 years. That is, Im[−1/𝜀(𝑞, 𝜔)]  is unknown for most 
materials. The optical constants have been measured across 
a sufficiently wide range of energy regions in only a very 
small number of materials, from which the optical ELF 
Im[−1/𝜀(𝜔)] can be determined. Therefore, to determine the 
q-dependence of Im[−1/𝜀(𝑞 > 0 , 𝜔)] , an algorithm is 
needed to extend the dielectric function to the q > 0 region. 
 
1) Penn algorithms 

Penn determined the Im[−1/𝜀(𝑞, 𝜔)] of the target material 
in Equation (3) from the optical ELF Im[−1/𝜀(𝜔)] and the 
Lindhard model dielectric function and proposed an 
algorithm to calculate IMFP. 7 This method is now known 
as the full Penn algorithm (FPA). In the FPA, the ELF in 
Equation (3) is given as  

 

Im[
−1

ε(𝑞,ω)] = ∫ 𝑑ω𝑝g(ω𝑝)Im [
-1

𝜀𝐿(q,ω;ωp)] ,            (5)∞
0      

 
where 𝜀#  represents the Lindhard dielectric function for 
free electron gas 8,9. Further, ω𝑝, n, and 𝑔(ω𝑝) represent 

the plasmon energy (= √4π𝑛 ), electron density, and 
coefficient satisfying Im[−1/𝜀(𝑞 = 0, 𝜔)] = Im[−1/𝜀(𝜔)] , 
respectively. 𝑔(ω𝑝)is given as 

 

𝑔(𝜔) = 2
𝜋𝜔

Im[
−1

𝜀(𝜔)].                  (6) 

 
Detailed information on the specific calculation is 

presented in references 6 and 10. 
There is also a simplified version of Penn algorithm (SPA) 

that introduces a single-pole approximation, and in the 
energy region above 200 eV, the IMFPs calculated with SPA 
agree well with the FPA results 7. 

Tanuma–Powell–Penn used experimentally determined 
optical ELF for 27 types of elemental solids 11,12, 15 types 
of inorganic compounds 13 , and 14 types of organic 
compounds 14, and they calculated the electron IMFPs from 
50 eV to 2,000 eV with a nonrelativistic Penn algorithm 7. 

Shinotsuka et al. used relativistic FPA to extend IMFP to 
an electron energy of 200 keV for 41 elemental solids 15, 42 
inorganic compounds 16, 14 organic compounds, and water 
17, and prepared an IMFP database from 50 eV to 200 keV to 
provide IMFP data on high-energy regions that are required 
for hard X-ray photoelectron spectroscopy (HAXPES) and 
TEM. 

The number of ELF data is insufficient for inorganic 
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compounds, and therefore, Shinotsuka et al. calculated the 
optical constants for more than 30 compound 
semiconductors and non-conductors using WIEN2k18  and 
FEFF codes 19 . Further, they prepared a highly accurate 
optical ELF database covering a broad energy range (0.1 
eV–1 MeV) 20. Their calculations significantly improved 
the accuracy of IMFPs compared to the earlier work of 
Tanuma et al. 21 . They also introduced an algorithm 
proposed by Boutboul et al. 22 to consider the band gap Eg 
for non-conductors. Then the IMFPs can be calculated as  

 
     λ(𝑇 )−1 = 1

π(T − 𝐸𝑔) ⋅ 𝐹 (𝑇 − 𝐸𝑔) ∬ Im [
−1

ε(ω, 𝑞)]
1
𝑞

dqdω ,  (7)
𝐷

 

 
𝐷 = { (ω, 𝑞) ∣∣ 𝐸𝑔 ≤ ω ≤ (𝑇 − 𝐸𝑔 − 𝐸𝑣), 𝑞− ≤ 𝑞 ≤ 𝑞+ }, 

(8) 
𝑞± = √(𝑇 − 𝐸g)(2 + (𝑇 − 𝐸g)/𝑐2)

± √(𝑇 − 𝐸g − ω)[2 + (𝑇 − 𝐸g − ω)/𝑐2]. 

 (9) 
As shown in Equation (8), the minimum electron energy 

loss ω𝑚𝑖𝑛 is Eg, and the maximum energy loss ω𝑚𝑎𝑥 is the 
energy difference between incident electron energy and the 
bottom of conduction band. The effect of band gap on 
IMFP is dependent on the magnitude of Eg. However, for 
the IMFPs of inorganic compounds, the difference is about 
±1.5% or less above 100 eV, and increases to about 6.5% at 
54.6 eV16. For example, SiO2 (Eg = 9.1eV) has a large 
bandgap, resulting in a large IMFP of ≥10% at 49.5eV16. 
Therefore, it is not appropriate to ignore Eg effects in IMFP 
calculations in the electron energy region below 100 eV. 

Nine materials (Al, Na, Au, GaAs, SiO2, c-BN, b-
carotene, Kapton, Polyacetylene) were selected from the 
IMFP data calculated by Shinotsuka et al. 15,16,17. Fig. 1 
shows their IMFPs as a function of electron energy between 
10 eV and 500 keV. Although there are clear differences in 
IMFPs between materials, it can be seen that all materials 
show minimum IMFP values in the energy range of 20 to 
100 eV. The energy that yields this minimum value and the 
energy dependence of its vicinity are largely dependent on 
the shape of the ELF of the material. Further, all materials 
exhibit a similar energy dependence between 
approximately 200 eV and 500 keV. In other words, it can 
be seen that at 200 eV and higher, the IMFP material 
dependence does not change even if the electron energy 
changes. 

Shinotsuka et al. 15,16,17 conducted fitting for the IMFPs of 

each material using the following equation by adding the 
relativistic correction to the modified Bethe equation 14 for 
inelastic electron scattering in solids. 

 
 

𝜆(𝑇 ) = 𝛼(𝑇 )𝑇
𝐸𝑝

2[𝛽(ln	(𝛾𝛼(𝑇 )𝑇 )−𝐶 /𝑇 +𝐷/𝑇 2]
         (10)    

 
where α(𝑇) = $%&/()*!+",

[$%&/(*!+")]"
≈ $%&/$1)$222.4

($%&/5$1224.2)"
 

 
The root-mean-square (RMS) deviation between the 

IMFPs obtained from fitting and each IMFPs calculated 
individually with FPA was 0.68% for elemental solids 15, 
0.60% for inorganic compounds 16, and 0.17% for organic 
compounds and liquid water 17. This demonstrates that the 
energy dependence of the IMFP of each material between 50 
eV and 200 keV can be described with the modified Bethe 
equation. 
 
2) Mermin-GOS algorithm  

Abril et al. determined the ELF of Equation (4) using the 
Merin dielectric function 𝜀𝑀(𝑞, 𝜔)23, which is given as 24 
 

Im[
−1

ε(𝑞,ω)] = Im [
-1

ε(q,ω)]VB
+ Im[

−1
𝜀(𝑞,𝜔)]𝐼𝑆

  (11)     

 
where Im[-1/e(q,w)] VB represents the contribution due to the 
excitation of the valence electron (outer shell electron), and 

Fig. 1. (Color online) Inelastic mean free paths as a function of 
electron energy for Na, Al, Au, c-BN, GaAs, SiO2, Polyacetylene, 
b-carotene, and Kapton. Solid, long and short dashed, and short 
dashed lines indicate IMFPs for elemental solids, inorganic 
compounds, and organic compounds, respectively. 
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it is expressed using 𝜀𝑀 (𝑞, 𝜔) as 
 

Im [
−1

ε(𝑞, ω)]𝑉𝐵
≈ ∑ 𝑎𝑖 𝐼𝑚 [

−1
ε𝑀 (𝑞, ω; ω𝑖, γ𝑖)]

, (12)
𝐿

𝑖=1
 

 
where L represents the number of ELF peaks, and 
𝑎𝑖, 𝜔𝑖, and 𝛾𝑖  represent the strength (oscillator strength), 
position, and half width of peak i, respectively. 

Each of these parameters are determined with the 
following equation, assuming that the optical ELF (ELF at q 
= 0) is approximated as the sum of Drude functions.  
 

Im [
−1

ε(ω)]
= ∑ 𝐴𝑖Im [

−1
ε𝑀 (𝑞 = 0, ω; ω𝑖, γ𝑖)]

𝐿

𝑖=1

≡ ∑ 𝐴𝑖
γ𝑖ωω𝑖

2

(ω2 − ω𝑖
2)

2 + γ𝑖
2ω2

𝐿

𝑖=1
.  (13) 

 
On the other hand, the ELF for the inner shell is given by 25 
 

Im [
−1

ε(𝑞, ω)]𝐼𝑆
= 2π2𝑁

ω ∑ α𝑗 ∑
𝑑𝑓𝑛𝑙

(𝑗)(𝑞, ω)
𝑑ω𝑛𝑙𝑗

,  (14) 

 
where 𝑑𝑓𝑛𝑙

(𝑗)(𝑞, 𝜔)/𝑑ω  is the general oscillator strength 

(GOS) in the hydrogen model for the j number element 
subshell (n,l). α6  represents the stoichiometry of the j 
number element in the compound.    

Denton et al. 26 reported IMFP in the range of 3 eV to 10 
keV for Al and Au using the Mermin-GOS algorithm. The 
integral domain D was set as ω𝑚𝑎𝑥 = min(𝐸/2,  𝐸 −  𝐸F), 
considering the indistinguishability of electrons. In these 
calculations, the optical ELF is approximated by calculating 
the contribution of the outer shell electrons in these 
calculations as seven Drude functions for Au and one Drude 
function for Al, respectively. 
Behar et al. calculated IMFP for HfO2 from 10 eV to 10 

keV using a similar method27. HfO2 IMFPs could be fitted 
with Equation (10) proposed by Tanuma et al., in energy 
regions between 40 eV and 10 keV. 
de Vera et al. 28 calculated IMFP for four organic 

compounds (PMMA, Kapton, polyacetylene, polyvinyl-2-
pyridine) in the energy range from 10 eV to 10 keV by 
incorporating the Born–Ochkur electron exchange 
correction29 into the Mermin-GOS algorithm; the integral 
domain was the same as that in reference 26. Their 
calculated IMFP for organic compounds ranging from 10 eV 
to 10 keV was sufficiently fitted with Equation (10). 

Garcia-Molina et al. calculated IMFP with Mermin-GOS 
in the range from 10 eV to 10 keV for liquid water, DNA, 
protein, lipid, carotene, sugar, and ice 30 . In these 
calculations, they corrected the electron exchange effect 
using the Born–Ochkur approximation. Instead of optical 
ELFs for the target materials, they directly used EELS 
(electron energy-loss spectroscopy) data, approximated the 
appropriate number for each compound with the Drude 
functions, and set the Mermin ELF parameters (in q = 0); 
the error margin for both the f-sum and KK-sum rules was 
2% or less. In addition, ω𝑚𝑎𝑥 used the following equation 
considering the ELF energy gap. 

 
ω𝑚𝑎𝑥 = min[

𝑇 +𝐸𝑏
2 , 𝑇 − 𝐸Pauli],                 (15)  

 
where 𝐸𝑏 = 𝐸𝑔 for the outer shell electrons, and Eb for the 
inner shell electrons is equal to the ionization energy; it was 
assumed that EPauli = 4eV( = EF ). They found that the IMFPs 
of low-energy electrons varied significantly among the 
series of calculated biomaterials. 

de Vera et al. 31 divided the ELF involving the outer shell 
electrons of each material into single excitation and plasmon 
excitation, and they calculated IMFP in the energy regions 
from several electron volts to 10 keV by applying the high-
order Born approximation for liquid water, Au, Al, and Cu. 
Meanwhile, it was assumed the Born–Ochkur 
approximation related to the electron exchange effect could 
be disregarded in plasmon excitation because it can be 
differentiated from incident electrons. In order to distinguish 
the ELFs of the outer shell at q =0 given by Eq. (17) for each 
excitation, they also introduced a switching function. This 
allowed us to handle the measured optical ELF by separating 
them into several single excitations and plasmon excitations. 
Integral domain D was separated into conductor and non-
conductor, and the upper limit of the energy integral for each 
single excitation was set as ω𝑚𝑎𝑥 . The most significant 
difference was that the indistinguishability of electrons was 
limited to single excitation, and plasmon excitation was not 
applicable. Based on this, the maximum energy loss in 
plasmon excitation was given by T- EF. Two types of 
excitations were considered for single excitation depending 
on whether the target material had an energy gap (Eg): 
electron transition to a local discrete energy level and 
transition to the conduction band; distinct ω𝑚𝑎𝑥 were given 
to each. Subsequently, it was reported that the calculated 
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IMFP values for water, aluminum, gold, and copper 
correlated well with the obtained experiment data, even in 
very low energy regions. 

 
3) Super Extended Mermin algorithm (S-EMA) 
 Da et al. 32 enabled the accurate approximation of ELF 
using unlimited number of Mermin oscillators by permitting 
negative terms in 	𝑎!  in Equation (12) to resolve the 
inconvenience of calculating inner shell electrons and outer 
shell electrons in Mermin-GOS as individual ELFs. This 
enabled the approximation of the rapidly changing shape of 
ELF because of phonon excitation, Eg in low energy regions 
from the shape at the absorption edge of the inner shell 
excitation, such as in K, L shells in the ELF in the high-
energy regions. Further, they applied this technique to IMFP 
calculations in several eV to 10 keV for Cu 32, and liquid 
water 33. In these calculations, the optical ELF in the range 
from 0 eV to 10 keV for Cu was approximated with 77 Drude 
functions. The ELF in the range from 10-7 eV to 30 keV for 
liquid water was approximated with 210 Drude functions. 
The calculated Cu IMFP showed smaller values in low 
energy regions than the IMFP calculated with FPA and 
Mermin-GOS. Their Cu IMFPs calculated by S-EMA agrees 
well with the Cu IMFPs obtained by Tanuma et al.34 from 
EPES in the energy range from 200 eV to 5 keV. In addition, 
their Cu IMFPs with S-EMA are in good agreement with the 
Cu IMFPs determined by Bourke et al.35 with XAFS in the 
energy range from 60 eV to 120 eV. 
 
4) Mermin–Penn Hybrid Approach (MPA)  

Nguyen–Truong introduced damping to the Penn 
algorithm by replacing the Lindhard dielectric function used 
in FPA with the Mermin dielectric function 36 . This 
corresponds to handling plasmon lifetimes as finite; that is, 
unlike the Mermin-GOS algorithm, it is no longer necessary 
to conduct separate calculations for the inner shell excitation 
and outer shell excitation and to approximate the optical 
ELF with many Drude functions. The measured optical ELF 
data can be used directly as follows, similar to PFA. 
Equation (5) is changed to the following equation using the 
Mermin dielectric function. 
 

Im[
−1

ε(𝑞,ω)] = ∫ 𝑑ω𝑝G(ω𝑝)Im [
-1

𝜀𝑀(q, ω; ωp)],   ∞
0 (16)  

 
i  “Emfietzoglou et al; corrected” in Figure 2 is IMFPs 

 
where G represents an adjustment parameter to ensure that 
the above equation correlates with the optical ELF ( q = 0). 
It is given by  
 
       𝐺(ω) = 

2
πω2γ𝐷

lm [
−1

ε(ω)] √2ω(ω2 + γ𝐷
2 ) (√ω2 + γ𝐷

2 − ω)   , (17) 

 
where γ𝐷 represents the damping coefficient, which is an 
external input parameter. The IMFPs for Al and Au were 
calculated between 1 eV and 30 keV with this method, and 
the resulting IMFPs were compared with the measurement 
values. When γ7 = 1.5	eV, the Al IMFPs with MPA agreed 
well with the experimental values in the energy range of 5 to 
9 eV. On the other hand, for Au, when 𝛾7 = 2.0	eV, the 
IMFP values from 1 eV to 3 eV calculated by MPA were in 
good agreement with those obtained from the GW+T ab 
initio calculations37. 

Further, band gap correction was incorporated into MPA 
using the Levine–Louie dielectric function 𝜀MLL38, and the 
IMFPs of water were calculated to be in the energy range of 
1 eV to 10 keV 39 (Figure 2). This improvement made it 
possible to avoid overestimating ELF because of the 
presence of a large energy gap in water; the determined 
IMFP agreed well with the experimental data 39. 
  
5) Comparison of IMFPs 

A detailed comparison of IMFP values has been conducted 
by Shinotsuka et al.15,16,17,33 They compared IMFPs 
calculated by FPA with IMFPs obtained from other 
calculation methods and  with experimental IMFPs, for 
elemental solids 15, inorganic compounds 16，liquid water 33, 
and organic compounds 17. The calculated IMFP values 
generally agreed well with the energy range between 300 eV 
and 10 keV.  

For example, Fig. 2 shows the IMFP values for liquid 
water calculated with the various algorithms described in 
this chapter. Meanwhile, it also shows as reference, the 
values calculated by Emfietzoglou et al. using the 
Emfietzoglou-Cucinotta-Nikjoo (ECN) model 40 , which 
yields analytic formulae for the arbitrary energy and 
momentum transfer in ELF(q,w) for the liquid water based 
on experimental datai. As mentioned earlier, even in Fig. 2, 

calculated by correcting the second-order Born 
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the calculated IMFP values agreed well with each other  in 
the electron energies between 300 eV and 10 keV. In the 
energy region below 100 eV, the IMFP values differ 
significantly depending on the presence or absence of 

electron exchange and Eg corrections.  
Da et al. also conducted detailed comparisons of FPA and 

Mermin-GOS using model Drude functions as the starting 
point for calculations instead of the measured values for ELF 
41 . They reported that the Mermin-GOS IMFP was 
approximately 5% smaller than the FPA IMFP at energies 
from 1 eV to 10 keV. Further, they compared IMFPs 
obtained from S-EMA, Mermin-GOS, and FPA for Al, Si, 
Cu, Au, and MgO using measured ELF 42. 
 

3. IMFP predictive equation 
The TPP-2M equation 14 developed by Tanuma et al. using 

IMFP values in energy ranges from 50 eV to 2 keV in 27 
elements and 15 inorganic compounds is widely used for 
estimating IMFP values. Furthermore, Shinotsuka et al. 15 
developed a relativistic TPP-2M that extends the upper limit 
of the application of this equation to a range from 2 keV to 
200 keV. The relativistic TPP-2M equation comprises the 

 
approximation and electron exchange to the ECN model. 

extended Bethe equation that incorporates the relativistic 
correction shown in Equation (10) and the conventionally 
used four parameters shown below. The range of 
applications is from 50 eV to 200 keV. 

 
𝛽 = −1.0 + 9.44

(𝐸𝑝
2 + 𝐸𝑔

2)
0.5 + 0.69𝜌0.1(eV−1 nm−1), (18𝑎) 

𝛾 = 0.191𝜌−0.5     (eV−1),                        (18𝑏) 
𝐶 = 19.7 − 9.1𝑈        (nm−1),                  (18𝑐) 

 𝐷 = 534 − 208𝑈       (eV nm−1),             (18𝑑) 
 

where 𝑈 = 𝑁𝑣𝜌/𝑀 = (𝐸𝑝/ 28.816)
2. 

The mean RMS deviation (50 eV–200 keV) for each 
material based on the IMFP values calculated with FPA and 
IMFPs obtained from the relativistic TPP-2M equation was 
11.9% for a group of 41 elemental solids, 10.7% for a group 
of 42 inorganic compounds, and 7.2% for a group of 14 
organic compounds and liquid water. Unfortunately, several 
materials such as c-BN, and diamond exhibit large RMS 
deviations. 

Figures 3 and 4 show the results of comparing IMFPs 
determined with the TPP-2M equation and those obtained 
experimentally, using Fe and MgO as examples. These 
figures show that the IMFP values in Fe and MgO given by 
the TPP-2M equation are in good agreement with the IMFP 
values 43,44,45,46,47,48 between 50 eV and 200 keV measured 
using various methods. 

 

4. Summary 

This article described the recent developments in IMFP 
calculations, which use dielectric response functions e(q, w) 
and optical ELF as the key parameters. A vast amount of 
effort has been expended to develop and improve the 
algorithms required to estimate Im[−1/𝜖(𝑞, 𝜔]  in q > 0 
from optical ELF Im[−1/𝜖(𝜔] . IMFPs calculated with 
various algorithms agreed well with each other at electron 
energies above 300 eV for most materials. However, in the 
energy region below 200 eV, there was a large variation. In 
addition, the energy dependence of IMFPs could be 
expressed by the extended Bethe equation (10) for electron 
energies above 50 eV. In the IMFP calculated from FPA, the 
material dependence could be expressed with the TPP-2M 
equation. The TPP-2M equation, then, indicate that the 

Fig. 2. (Color online) Comparison of IMFPs for liquid 
water calculated from optical ELF (q = 0, w) with 
various algorithms. IMFP data were cited from 
Shinotsuka et al. 17 using FPA-BABC, Garcia-Molina et 
al30 using Mermin GOS, Nguyen-Truong39 using MPA, 
Emfietzoglou et al.40 de Vera et al.32 using Mermin-
GOS with a high-order Born approximation, and 
Shinotsuka et al. using SE-MA 33 
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IMFP values between 50 eV and 200 keV can be estimated 
from simple physical quantities such as the density of the 
target sample and the number of valence electrons. 

The following points are issues that should be addressed.  
ELF is an important physical quantity that determines the 
accuracy of IMFP calculations; however, there are many 
problems with the number and accuracy. However, now that 
ELFs can be calculated from first-principles calculations, 
ELFs for many materials should be compared and evaluated 
with experimental values, and this information should be 
maintained as a database. 

 The treatment and evaluation of electron exchange 
effects, Eg effects, and related integral regions are important 
remaining issues for IMFP calculation methods based on 
dielectric response functions. Furthermore, the Born 
approximation describes the interaction between the 
incident high-energy electrons and the electrons in the solid. 
Considering that the energy difference between the outer 
shell electrons and incident electrons is small in the low 

 
1 http://kikakurui.com/k0/K0147-1-2017-01.html 
2 C. J. Powell, A. Jablonski, J. Phys. Chem. Ref. Data, 28, 
19 (1999). 
3 U. Fano, Ann. Rev. Nucl. Sci. 13, 1 (1963). 
4 J. M. Fernandez-Varea, F. Salvat, M. Dingfelder, D. 

Liljequist, Nucl. Instrum. Meth. Phys. Res. B 229, 187 
(2005). 

5 J.M. Fernandez-Varea, D. Liljequist, S. Csillag, R. Raty, 

energy region below about 100 eV, it may be necessary to 
reconsider the effect of this higher order correction and the 
validity of the Born approximation. In such cases, 
comparison with measured IMFP values would be very 
important. Although this point is not addressed in this report, 
it is hoped that accurate measured IMFP values over a wide 
energy range for many materials will be available in the near 
future. 
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