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ABSTRACT
We have developed an open-source software called CrySPY, which is a crystal structure 
prediction tool written in Python 3, and runs on Unix/Linux platforms. CrySPY enables anyone 
to easily perform crystal structure prediction simulations for materials discovery and design, 
and automates structure generation, structure optimization, energy evaluation, and efficiently 
selecting candidates using machine learning. Several searching algorithms are available such 
as random search, evolutionary algorithm, Bayesian optimization, and Look Ahead based on 
Quadratic Approximation. Machine learning is employed to efficiently select candidates for 
priority optimization. CrySPY does not require complex machine learning techniques for users. 
In the latest version of CrySPY, both atomic and molecular random structures can be gener-
ated. CrySPY supports VASP, QUANTUM ESPRESSO, OpenMX, soiap, and LAMMPS for local 
structure optimization and energy evaluation. CrySPY is distributed under the MIT license at 
https://github.com/Tomoki-YAMASHITA/CrySPY. Documentation of CrySPY is also available at 
https://Tomoki-YAMASHITA.github.io/CrySPY_doc.
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1. Introduction

Research on data-driven materials development based on 
computer simulations has been actively conducted for the 
last decades. With the development of computational 

capabilities, it has become possible to obtain a large 
amount of reliable data from first-principles calculations 
at high speed. However, first-principles calculations can-
not be directly applied to the design of new materials for 
new compositions and unknown structures, because such 
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quantum-mechanical approaches require their crystal 
structures as input. In recent years, crystal structure pre-
diction (CSP) methods have made it possible to discover 
new materials in conjunction with first-principles calcu-
lations. The history of new material discovery by CSP is 
well summarized in the review paper by the pioneers in 
this field [1]. So far, a great deal of effort has been devoted 
to developing the searching algorithms, such as random 
search (RS) [2–5], simulated annealing [6,7], minima 
hopping [8,9], evolutionary algorithm (EA) [10–13], 
and particle swarm optimization (PSO) [14,15]. In parti-
cular, EA and PSO are widely used and efficient algo-
rithms as implemented in USPEX [11–13] and 
CALYPSO [14,15], respectively.

Although significant progress in searching meth-
odologies has been made over the years, CSP is quite 
a time-consuming task. In CSP, first-principles meth-
ods are mostly used for the structure relaxation and 
energy evaluation to find the global energy minimum. 
However, first-principles calculations are quite heavy 
for large systems. The development of more efficient 
searching algorithms is highly desired to reduce com-
putational cost. In our previous study, we proposed two 
selection-type algorithms, Bayesian optimization (BO) 
[16,17] and Look Ahead based on Quadratic 
Approximation (LAQA) [18]. In the conventional 
methods, all generated structures are locally optimized 
in order, while the selection-type algorithms employ 
machine learning to efficiently select candidates for 
priority optimization. These machine learning 
approaches make it possible to find the most stable 
structure among a large number of structures with 
a small number of trials. Besides, it is worth mentioning 
that researches on the acceleration of local structure 
optimization have also been conducted using machine 
learning potential [19–23].

We have developed an open-source software called 
CrySPY, which enables anyone to easily perform CSP 
simulations for materials discovery and design. CrySPY 
automates structure generation, structure optimization 
and energy evaluation by external programs, and effi-
ciently selecting candidates using machine learning. 
While some codes for CSP such as AIRSS [2–5], 
USPEX [11–13], CALYPSO [14,15], GASP [24], and 
XtalOpt [25] are released, CrySPY is unique in its fea-
ture of selecting candidates using machine learning. In 
Section 2, we provide an overview of the software. In 
Section 3, we elaborate on each searching algorithm. 
Some features of CrySPY are introduced in Section 4. 
Finally, we summarize our software in Section 5.

2. Overview

2.1. System requirement

CrySPY is written in the Python 3 programming lan-
guage, and runs on Unix/Linux platforms including 

macOS. CrySPY requires the following external 
Python libraries:

• COMBO
• pymatgen
• PyXtal
COMBO [26] is an efficient Bayesian optimization 

library, pymatgen [27] has many features in materials 
analysis, and PyXtal [28] is useful for crystal structure 
generation and symmetry analysis. First-principles or 
classical interatomic potential codes are also needed 
for energy evaluation and local structure optimization. 
CrySPY is currently interfaced with the following pro-
gram packages for such purposes:

• VASP
• QUANTUM ESPRESSO
• OpenMX
• soiap
• LAMMPS
VASP [29], QUANTUM ESPRESSO [30], and 

OpenMX [31] are first-principles program packages, 
and soiap [32] and LAMMPS [33] are classical mole-
cular dynamics packages.

2.2. Simple execution

CrySPY is simple to run. CrySPY itself is available at 
https://github.com/Tomoki-YAMASHITA/CrySPY. 
Users only need to provide the input file of CrySPY, 
cryspy.in, and input files required for the structure 
optimizer. An example of cryspy.in is shown below:
[basic] 
algo = RS 
calc_code = VASP 
tot_struc = 10 
nstage = 2 
njob = 5 
jobcmd = qsub 
jobfile = job_cryspy  

[structure] 
natot = 8 
atype = Si 
nat = 8  

[VASP] 
kppvol = 80 100 

If VASP code is used, for example, INCAR and 
POTCAR files are needed as input files. Structure data 
and k-point input files such as POSCAR and 
KPOINTS are automatically generated by CrySPY 
with pymatgen. A job script to submit structure opti-
mization jobs according to the system is also needed. 
Once the input files are prepared, the CSP simulation 
can be easily started by executing the following 
command:
$ python3 /path/to/cryspy.py
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Here, replace /path/to/cryspy.py with 
appropriate path of the main script, cryspy.py, 
for each user’s system. When cryspy.py is exe-
cuted, structure generation or job management is 
automatically performed, and the program will 
pause. They do not need to keep the program running.

2.3. Job automation

Structure optimization jobs are managed automati-
cally by CrySPY. The number of the jobs to be sub-
mitted at a time is controlled by the input variable, 
njob, in cryspy.in. We adopt a stage-based sys-
tem for structure optimization calculations. As an 
example of this, users can configure the following 
settings. In the first stage, only the ionic positions are 
relaxed, fixing the cell shape. Next, the ionic positions 
and cell shape are fully relaxed in the second stage. 
When a job is finished, the optimized structure data 
and energy can be automatically collected and a new 
job can be submitted.

2.4. Analysis and visualization

CSP simulation data are serialized and saved using the 
pickle module of Python. The data can be easily ana-
lyzed using Python codes, and jupyter notebook tem-
plates for this purpose are available at https://github. 
com/Tomoki-YAMASHITA/CrySPY_utility. Figure 1 
is an example of CSP results drawn using the template. 
The energies of optimized structures of Y2Co17 
obtained by CSP with BO are shown here. Each selec-
tion (five structure candidates) by machine learning is 
visualized in different colors. The result summary is 
also output as a text file, including the structure 
indices, the selection number, space group of the 
initial and optimized structures, energies, and so on, 
for quick checking as listed in Table 1.

In addition, initial and optimized structure data are 
written as text files in POSCAR and CIF format, so 
that users can see the structures using a crystal struc-
ture visualization tool such as VESTA [34].

3. Searching algorithms

The following searching algorithms are implemented 
in CrySPY:

• RS
• EA
• BO
• LAQA
RS relies on random structure generation and local 

structure optimization. Random structure generation is 
fundamental and used in other searching algorithms. 
EA puts emphasis on effective structure generation 
modeled after the theory of evolution, while BO and 
LAQA are the selection-type algorithms that can effi-
ciently select potential candidates from a large number 
of structures by machine learning, reducing the number 
of searching trials. The key point here is that the selec-
tion-type algorithm can be used in combination with 
the structure generation methods by RS and EA.

Table 1. Example of the result by CrySPY.

Select Spg_num Spg_sym Spg_num_opt Spg_sym_opt E_eV_atom Magmom Opt

251 1 107 I4mm 0 None NaN NaN skip
14 1 175 P6/m 191 P6/mmm −6.10057 27.5053 done

273 1 44 Imm2 44 Imm2 −6.54106 26.9209 not_yet
107 1 195 P23 200 Pm-3 −6.49809 26.6771 done

190 1 38 Amm2 38 Amm2 −6.68704 25.6406 done
111 2 71 Immm 71 Immm −6.50534 26.2337 done
59 2 16 P222 16 P222 −6.47951 26.1596 done

288 2 12 C2/m 12 C2/m −6.79212 25.1641 done
133 2 71 Immm 71 Immm −6.56943 25.576 done

262 2 156 P3m1 0 None NaN NaN skip
93 3 150 P321 0 None NaN NaN skip

294 3 155 R32 155 R32 −6.28959 26.4513 not_yet
172 3 177 P622 191 P6/mmm −5.96608 28.2994 done
145 3 177 P622 177 P622 −6.60823 24.9556 done

176 3 115 P-4 m2 115 P-4 m2 −6.56049 26.7792 done

Figure 1. Example of CSP result by BO. Energies of optimized 
Y2Co17 structures are shown. Each selection by BO is color- 
coded.
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3.1. Random search

A specified number of structures are generated ran-
domly at the beginning, and local structure optimiza-
tion is performed one by one. CrySPY has two modes of 
random structure generation: atomic crystal structure 
generation and molecular crystal structure generation. 
The latest version of CrySPY employs PyXtal library 
[28] as default to generate such random structures.

3.1.1. Atomic crystal structure generation
CrySPY can generate crystal structures with specific 
symmetry and chemical compositions using PyXtal. 
Optionally, it is also possible to generate the crystal 
structures using find_wy program [35] that we have 
been using. As default, a space group is randomly 
selected and the lattice parameters are automatically set 
to appropriate values. The volume of the unit cell can be 
specified within an arbitrary range in CrySPY.

Non-symmetric random structures can also be gener-
ated using a built-in function of CrySPY for low- 
symmetry CSP. In this case, a crystal system (not 
a space group) and lattice parameters are randomly 
selected within a physically appropriate range, and 
a specified number of atoms are arranged in the cell at 
random.

3.1.2. Molecular crystal structure generation
Interfacing with PyXtal enables symmetric molecular 
crystal generation. When the molecular geometry is 
given, random crystal structures with molecules occupy-
ing both general and special Wyckoff positions according 
to a specified space group can be generated. The follow-
ing is an example of the structure section of the input file, 
cryspy.in, for two formula units of Li3PS4:
[structure] 
struc_mode = mol 
natot = 16 
atype = Li P S 
nat = 6 2 8 
mol_file = ./Li.xyz ./PS4.xyz 
nmol = 6 2

Here, Li and PS4 units are defined in ./Li.xyz 
and ./PS4.xyz files, respectively. A single atom is 
treated as a molecule in the molecular crystal structure 
generation mode. In this example, a random molecu-
lar crystal structure is composed of six Li molecules 
(atoms) and two PS4 molecules as specified in the 
input variable, nmol.

We generated 50 random molecular crystal struc-
tures using the above settings to validate whether 
a stable structures can be obtained. Total energy 
calculations and local structure optimizations were 
carried out using the density functional theory (DFT) 
with the projector-augmented wave (PAW) method 
[36] with the VASP code [29]. The generalized gra-
dient approximation (GGA) by Perdew, Burke, and 
Ernzerhof [37] was employed for exchange- 
correlation functional. A cutoff energy of 625 eV for 
the plane-wave expansion of the wave function and 
k-point mesh density of 80 Å� 3 were used. The 
atomic coordinates and cell parameters were fully 
optimized until forces acting on every atom became 
at least smaller than 0.01 eV/Å. Figure 2 shows the 
most and second most stable structures predicted by 
our CSP simulation. Space group of the most 
and second most stable structures are P�43m and 
Pmn21, respectively. The total energy difference 
between them is only 10 meV/atom. Unfortunately, 
the former (P�43m) was not observed in the experi-
ment, while the latter (Pmn21) was obtained and is 
known as a stable structure, γ-Li3PS4 [38]. This can 
happen because the calculated energy difference is 
much smaller than the chemical accuracy (1 kcal/ 
mol = 43 meV/atom). We might evaluate the total 
energy of the former structure a little too low with the 
DFT calculation. The predicted and experimental 
crystal parameters of γ-Li3PS4 were listed in 
Table 2. It is an almost perfect match except for the 
tiny amount of differences in lattice constants and 
atomic positions. These results demonstrate that the 
symmetric molecular structure generation method is 
quite useful for stable structure predictions of mole-
cular crystals.

Figure 2. Two stable structures of Li3PS4 predicted by a CSP simulation drawn by VESTA [34]. (a) Space group P�43m and (b) space 
group Pmn21. Green, purple, and yellow spheres represent Li, P, and S atoms, respectively. The structure of Pmn21 corresponds to 
γ-Li3PS4 that is known as the most stable structure [38].
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Even in the molecular crystal structure generation 
mode, CrySPY can specify the volume of the unit cell 
within an arbitrary range, keeping the molecular geo-
metry. The feature to generate non-symmetric mole-
cular crystal structures is also implemented in CrySPY 
for low-symmetry CSP. After randomly selecting 
a space group, the molecule is placed at a Wyckoff 
position and rotated randomly without considering 
the space group, leading to breaking the symmetry.

3.1.3. Constraint of minimum interatomic distance
In generating random structures, CrySPY can restrict 
the interatomic distance so that it is not too close. 
Here is an example of the input file to limit minimum 
interatomic distance for a Y-Co system:
[structure] 
mindist_1 = 2.0 1.8 
mindist_2 = 1.8 1.5
This means that minimum interatomic distances of 

Y-Y, Y-Co, and Co-Co are limited to 2.0, 1.8, and 1.5 Å, 
respectively. Structures with interatomic distances 
shorter than these values are automatically eliminated.

3.1.4. Constraint of space group
Users can limit space group. As an example, generated 
structures are limited to cubic systems with the following 
setting:
[structure] 
spgnum = 195-230

3.2. Evolutionary algorithm

EA can be more effective than RS in generating 
structure. We implemented EA in CrySPY, referring 
to USPEX [11–13] and XtalOpt [25]. EA is based on 
that a population of structures is evolved, driven by 
survival of the fittest. Some lower-energy structures 

can become parents of a new generation of struc-
tures. CrySPY employs tournament selection and 
roulette selection for selecting parents from 
a population of surviving parents. Evolutionary 
operations for producing offspring from parents are 
of key importance. Crossover, permutation, and 
strain operations are available in CrySPY. The new 
generation includes not only structures produced by 
these evolutionary operations but also random struc-
tures and structures taken over by elite selection. In 
the elite selection, a part of the surviving parents are 
passed on to the next generation without mutation to 
keep the current best structures. An example of the 
EA section of the input file for a binary system is 
following: 

[EA] 
n_pop = 20 
n_crsov = 10 
n_perm = 3 
n_strain = 5 
n_rand = 2 
n_elite = 2 
n_fittest = 10 
slct_func = TNM 
t_size = 2 
maxgen_ea = 5 
mindist_ea_1 = 2.0 1.8 
mindist_ea_2 = 1.8 1.5 

Minimum interatomic distances can be also limited 
in producing offspring.

3.2.1. Parents selection
The number of surviving structures is specified in the 
input variable, n_fittest. The specified number of 
lower-energy structures excluding duplicates can be 
candidates to produce offspring. CrySPY has two meth-
ods to select the candidates. One is the tournament 
selection. A specified number of candidates (t_size) 
are randomly selected, and the candidate with the low-
est energy among them is chosen as the parent. The 
other is the roulette selection. In this method, the 
probability of being selected as a parent is deter-
mined as: 

pi ¼
f 0iP
k f 0i

; (1) 

where pi and f 0i are the probability and linear-scaled 
fitness of ith candidate, respectively. The linear scaling 
of fitness is done by: 

f
0

i ¼
a � b

fmax � fmin
fi þ

bfmax � afmin

fmax � fmin
; (2) 

where fitness fi represents sign-reversed energy of ith 
candidate, a and b are parameters that define the range 

Table 2. Crystal parameters of predicted structure, and experi-
mental ones [38] for γ-Li3PS4.

Predicted

Space group Pmn21 (31)  
a = 7.78045; b = 6.61350; c = 6.21194

Atom Site x y z

Li 4b 0.2432 0.3151 0.9970
Li 2a 0 0.1450 0.4853
P 2a 0 0.8173 0.9956
S 4b 0.2178 0.6722 0.8867
S 2a 0 0.1108 0.8849
S 2a 0 0.8090 0.3276

Experiment [38]

Space group Pmn21 (31)  
a = 7.70829; b = 6.53521; c = 6.1365

Atom Site x y z

Li 4b 0.2502 0.3309 0.0179
Li 2a 0 0.145 0.486
P 2a 0 0.8218 0.9942
S 4b 0.2185 0.6717 0.8857
S 2a 0 0.1083 0.888
S 2a 0 0.8049 0.3230
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of f 0i , fmax and fmin are maximum and minimum values 
of fitness, respectively. For both methods, the prob-
ability of being selected as a parent is higher for can-
didates with lower energy.

3.2.2. Crossover
Figure 3 depicts a schematic crossover operation. 
Selected two parents are sliced near the center in 
a lattice vector after randomly translating their origin. 
Two offspring are produced by swapping the sliced 
parents, each carrying some genetic information. The 
number of atoms in the offspring is not necessarily the 
same as that of the parents at this time. Only 
a structure with a larger number of atoms is adopted. 
The number of atoms in the adopted structure is 
adjusted by removing or adding atoms near the bor-
der. Finally, the interatomic distances are checked.

3.2.3. Mutation
In permutation operation, two atoms of different ele-
ments are swapped in a selected parent. The number 
of times for permutation can be specified in the input 
file. Strain operation is also used as mutation. Lattice 
vectors a of a selected parent are transformed to a0 by 
applying a strain matrix: 

a
0

¼

1þ η1
1
2 η6

1
2 η5

1
2 η6 1þ η2

1
2 η4

1
2 η5

1
2 η4 1þ η3

0

@

1

Aa; (3) 

where ηi are given by normal distribution with a mean 
of zero and a standard deviation.

3.3. Bayesian optimization

Our BO algorithm has been implemented in CrySPY. 
CSP using BO has been successfully applied to the 
known systems such as NaCl and Y2Co17 [16]. The 
results have demonstrated that BO can significantly 
reduce the number of searching trials required to find 
the global minimum structure by 30–40% in compar-
ison with pure RS, leading to much less computational 
cost. Although the candidate structures were created 
by random structure generation in the above study, it 
is possible to select from candidate structures gener-
ated by other methods such as EA.

BO is a well-established technique for black-box 
optimizations [39–41]. Figure 4 shows a CSP simula-
tion procedure by BO, which is automated in CrySPY. 

First, a specified number of initial structures are ran-
domly generated. We have to calculate the structure 
descriptors of the initial structures to learn the data 
and predict promising candidates. In the first selec-
tion, a specified number of structures are randomly 
selected and locally optimized to prepare the first 
training data. The descriptors for the optimized struc-
tures are updated. Then, the next candidates are 
selected by BO, and this sequence of the procedure is 
repeated. The below is an example of the BO section of 
the input file, cryspy.in:
[BO] 
nselect_bo = 5 
dscrpt = FP 
score = TS 
fp_rmin = 0.5 
fp_rmax = 5.0 
fp_npoints = 20 
fp_sigma = 1.0 
max_select_bo = 20
Here, one can specify the number of structures to 

be selected at a time, acquisition function, and para-
meters for calculating the structure descriptors.

3.3.1. Structure descriptor
To utilize machine learning, we have to convert crystal 
structures into vector data, called structure descriptor. 
Structure descriptors should measure the similarity of 
crystal structures and correlation between energy and 
structure. Although various structure descriptors have 
been developed recently [19,42–47], CrySPY currently 
supports only the F-fingerprint of Oganov and Valle 
[48] expressed as 

FABðRÞ ¼
X

Ai;cell

X

Bj

δðR � RijÞ

4πR2
ij

NANB
V Δ

� 1: (4) 

FABðRÞ is a function of distance R, where A and B are 
chemical elements, Rij is the interatomic distance 
between atoms i and j, NA and NB are the number of 
A and B atoms, and V is the unit cell volume. δðR �
RijÞ is a Gaussian-smeared delta function, and the 
double sum runs over all atoms i within the unit cell 
and all j within the distance between minimum and 
maximum cutoff distance. The F-fingerprint is discre-
tized over bins of width Δ to be treated as a vector.

The parameters for structure descriptors would 
affect the CSP performance. A common problem in 
BO is the need to predetermine the parameters. We 

Figure 3. Crossover operation. As the offspring has one extra atom, an atom near the border (red broken line) is removed to adjust 
the number of atoms.
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also proposed an information measure of the distribu-
tion to estimate an appropriate parameter value, 
which can be predetermined [17]. CrySPY will be 
further developed to include other structure descrip-
tors such as atom-centered symmetry functions 
[19,42,43], Smooth Overlap of Atomic Positions 
(SOAP) [44], orbital-field matrix (OFM) [45], and 
crystal graph [46]. Although various descriptors have 
been developed, selecting promising candidates in 
multi-specie systems becomes more difficult as the 
dimensions of the descriptors increase and become 
more complex. In general, BO has a problem with 
searching in high-dimensional space [49,50]. We can-
not tell at this time whether BO can work efficiently in 
ternary or quaternary systems. To tackle this problem, 
investing the searching efficiency in multi-specie sys-
tems with the same atomic configuration but different 

number of atomic species such as diamond, zinc 
blende, and chalcopyrite structures will be a key task 
for us. Moreover, we will investigate the efficiency of 
BO when dimensionality reduction such as principal 
component analysis is applied to complicated descrip-
tors for future work.

3.3.2. COMBO in CrySPY
CrySPY is interfaced with COMBO [26], which is 
a Python library designed for BO that employs 
Thompson sampling (TS) [41], random feature maps 
[51], and automatic hyperparameter tuning. CrySPY 
does not require complex machine learning techni-
ques for users. A Gaussian process [52] is commonly 
used in BO to predict a true function. The uncertainty 
of the predicted function is also evaluated as predictive 
variance. The next candidates are selected based on the 

Figure 4. Simulation procedure in BO, which is automated in CrySPY.
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acquisition function computed from the predictive 
value and variance. The following acquisition func-
tions are available in CrySPY: probability of improve-
ment (PI) [53], expected improvement (EI) [39], and 
TS. BO enables us to balance the tradeoff between 
exploration and exploitation of the search space. The 
candidates with lower predicted values and large var-
iance are preferentially selected. CrySPY has an addi-
tional feature to output the predictive value and 
variance as a text file during CSP simulations.

A random feature map can be used instead of 
a Gaussian process to speed up the computation. It 
allows us to approximate a Gaussian process with 
a Bayesian linear model. The number of features in 
the random feature map, which determines the accu-
racy and computational complexity, is specified in the 
input file as:
[BO] 
num_rand_basis = 2000

3.4. LAQA

As mentioned above, BO requires a structure descrip-
tor, and the searching efficiency strongly depends on 
the structure descriptor. For non-experts, there are 
difficulties such as how to predetermine the para-
meters for the structure descriptor. Besides, there are 
many cases where the selected candidate with a high- 
energy structure does not provide important informa-
tion for learning, and the local structure optimization 
of that candidate takes inefficient time. To simplify 
and improve the efficiency, another selection-type 
algorithm, LAQA, has been developed [18]. LAQA 
allows us to find the most stable structure with 
a minimum number of total local optimization steps. 
In our previous study, the computational cost can be 
significantly reduced by 50–90% compared to RS [18]. 
In the case of LAQA as well as BO, the candidate 
structures can be generated by any methods such 
as EA.

Figure 5 illustrates a CSP simulation procedure by 
LAQA, which is automated in CrySPY. Unlike con-
ventional CSP methods, in LAQA, local structure 
optimization of the selected candidates is not per-
formed all at once. We proceed only a few optimiza-
tion steps for the selected candidates, and pause the 
simulation. LAQA can roughly estimate the final 
energy during local optimization, and the total com-
putational cost can be reduced by controlling the local 
optimization step based on that estimated energy. 
A rough estimate of the final energy is used as the 
score L, and predicted using a quadratic approxima-
tion from the current energy and force acting each 
atom as: 

L ¼ � Eþ c
F2

2ΔF
; (5) 

where E is the energy per atom, F is the averaged norm 
of the atomic force, ΔF is the force difference from the 
previous step, and c is the bias parameter. The next 
candidates are selected based on the score L and pre-
ferentially optimized, thereby enabling an efficient 
search for the global minimum without unnecessary 
optimization calculations. The below is an example of 
the LAQA section of the input file, cryspy.in:
[LAQA] 
nselect_laqa = 5
The input for LAQA is quite simple. One needs to 

specify the number of candidates to be selected at 
a time. Optionally, the bias parameter c can be speci-
fied. It is important to note that LAQA does not 
require any structure descriptors. One do not have to 
worry about the descriptors getting complicated in 
large and multi-specie systems.

4. Other features

4.1. Loading initial structures

User-defined initial structures can be used instead of 
random structures in CrySPY. The initial structure 
data should be put in ./data/pkl_data/init_-
struc_data.pkl (relative path from the input file) 
before starting the CSP simulation. The loading flag 
also should be turned on in the input file as:
[option] 
load_struc_flag = True

4.2. Appending structures

Initial structures can be appended at any time during 
the CSP simulation, except when using EA. By simply 
increasing the value of the input variable, tot_-
struc, in the basic section, CrySPY can append ran-
dom structures to the initial structure data. 
Furthermore, CrySPY has a feature to generate and 
append structures using EA from already optimized 
structures and their energy data by turning on the 
flag as:
[option] 
append_struc_ea = True
The input variables for EA as listed in Section 3.2 

are also needed. This allows us to use the hybrid 
algorithms of EA and BO, or EA and LAQA, which 
could be more efficient. We will investigate searching 
efficiency of the hybrid algorithms in several materials 
for future work.

4.3. Skip and recalculation

Sometimes first-principles calculations do not work 
and give strange energies with wrong electronic struc-
tures. In such a case, CrySPY can skip the optimization 
and energy evaluation by manually editing the file, 
./work/000016/stat_job (relative path from 
the input file as an example of structure ID 16). If 
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necessary, CrySPY can recalculate the structure by 
specifying the structure ID in the input file as:
[option] 
recalc = 16

4.4. Step data

Optionally, CrySPY can save the data in the process of 
local structure optimization for the structure, energy, 
force, and stress, by turning on the corresponding flag 
in the input file as:
[option] 
energy_step_flag = True 
struc_step_flag = True 

force_step_flag = True 
stress_step_flag = True
These can be used to generate a database for various 

applications such as machine learning potential 
generation.

5. Conclusion

We introduced a CSP tool CrySPY written in 
Python 3, which runs on Unix/Linux platforms. 
This open-source code allows us to automate struc-
ture generation, structure optimization, energy eva-
luation, and efficiently selecting candidates using 
machine learning. The searching algorithms avail-
able in CrySPY are highlighted. In particular, the 

Figure 5. Simulation procedure in LAQA, which is automated in CrySPY.
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selection-type algorithms can efficiently select can-
didates for priority optimization, reducing the com-
putational cost significantly. Non-experts can 
conduct CSP simulations using CrySPY without 
the need for special skills. CrySPY is interfaced 
with several structure optimizers such as VASP, 
QUANTUM ESPRESSO, OpenMX, soiap, and 
LAMMPS. The current version of the software is 
0.9.1 at the time of writing. CrySPY will be further 
developed to include more structure descriptors and 
new features. The open-source code is developed in 
github. The documentation and utility of CrySPY 
are also available. We hope our open-source soft-
ware will help to standardize research with CSP for 
materials discovery and design.
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