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Surface stress and strain play important roles in surface
reconstruction and nanostructure growth. If we can control
the surface stress and strain, it may be one of the key
technologies for fabrication of novel functional
nanostructures. In order to understand the effect of
stress/strain on the surface nanostructures, we have
developed a dual probe UHV-STM with in-situ external
stress/strain application capability.

Introduction Summary
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Si(100) surface was selected as a suitable model system to
clarify the performance of our stress-applicable UHV Dual-
probe STM. Original vicinal Si(100) surface showed even
distribution of (12) and (21) domains. At elevated
temperatures, we have succeeded in in-situ observation of
domain redistribution on Si(100) surface induced by applying a
uni-axial stress with atomic resolution. Domains for which an
applied tensile stress is directed along the dimer bond become
less stable and shrink. By this way, quasi single (12) domain
surface can be fabricated.
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Purpose
Development of in-situ Stress-Field STM in 

UHV with Atomic Resolution Imaging

Demonstration of the Performance of the 

Stress-Filed STM by its Application to Double-

domain Si(100) Surfaces

Historical Background 
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Basic Design

Material Mechanics

t : thickness [m]

l : length [m]

 : deviation at the center [m]

 : strain

 : stress

E :Young’s modulus [N/m2] 
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After Tensile-Stress Application

Domains for which an applied tensile stress is directed along the 

dimer bond become less stable and shrink. 
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