NSP1-104 Development of UHV scanning probe microscope with external stress and strain application

<u>D Fujita</u>, M. Kitahara, K. Onishi and K. Sagisaka

Advanced Nano Characterization Center, National Institute for Materials Science (NIMS) 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan

Introduction

Surface stress and strain play important roles in surface reconstruction and nanostructure growth. If we can control the surface stress and strain, it may be one of the key technologies for fabrication of novel functional nanostructures. In order to understand the effect of stress/strain on the surface nanostructures, we have developed a dual probe UHV-STM with in-situ external stress/strain application capability.

Summary

-Field STM

Si(100) surface was selected as a suitable model system to clarify the performance of our stress-applicable UHV Dualprobe STM. Original vicinal Si(100) surface showed even distribution of (1×2) and (2×1) domains. At elevated temperatures, we have succeeded in in-situ observation of domain redistribution on Si(100) surface induced by applying a uni-axial stress with atomic resolution. Domains for which an applied tensile stress is directed along the dimer bond become less stable and shrink. By this way, quasi single (1×2) domain surface can be fabricated.

Historical Background

1988 Men, Packard, Webb: Phys. Rev. Lett., 61, 2469 Si(100) Surface under an Externally Applied Stress LEED in-situ Observation

1990 Swartzentruber, Mo, Webb, Lagally J. Vac. Sci. Technol. A, 8, 210 Strain Effects on Si(001) using STM UHV-STM ex-situ observation after Stress Application

1998 Coupeau, Girard, Grilhe: J. Vac. Sci. Technol. B, 16, 1 AFM in-situ Observations under Deformation in Air

SAMPLE

SI	$\left(100 \right)$	Mod	el
			STM Image taken by Stress-Field ST
(a) unreconstructed	(b) symmetric dimer	(C) asymmetric bucked	
$ \begin{array}{c} (1 \times 1) \\ & \bullet & \bullet & \bullet & \bullet \\ & \bullet & \bullet$	(2×1)	Cimer	V = + 0.8V, I = 120 pA
		δ^+	(1×2) ᠭ᠊᠆᠆ᢩᠬ᠆᠆ᢩ
	$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & & \\ & & \\ \end{array} \begin{array}{c} & & \\ & & \\ & & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ \end{array} \begin{array}{c} & & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $		

Atomic Resolution

Si(111) n-type P-doped 0.01Ωcm 250μmt **Bending Stress** $(\delta = 125 \ \mu m, \epsilon = 0.155\%, \sigma = 280 \ MPa)$

Tensile Stress **O**

Purpose

Development of in-situ Stress-Field STM in UHV with Atomic Resolution Imaging

Demonstration of the Performance of the Stress-Filed STM by its Application to Doubledomain Si(100) Surfaces

Material Mechanics

Tensile Stress δ $\varepsilon = \frac{6t}{2}\delta$ *t* : thickness [m] *l* : length [m] δ : deviation at the center [m] 6Et ε : strain

Stress-Field SPM

Si : $E = 1.805 \times 10^{11} \,\text{N/m}^2$

Si(100) Vicinal Surface

0.7deg. Off <110> Si(100) n-type P-doped 0.02Ωcm 250µmt W tip at RT

Clean Surface before Stress Application

 (2×1) : (1×2) = 50% : 50%

 σ : stress *E* : Young's modulus [N/m²]

(2×1) : (1×2) = 20% :80%

Domains for which an applied tensile stress is directed along the dimer bond become less stable and shrink.

Tensile Stress

* E-mail: <u>fujita.daisuke@nims.go.jp</u>

www.nims.go.jp/nanophys6/

References

[1] F. K. Men, W. E. Packard, and M. B. Webb, Phys. Rev. Lett. 61, 2469 (1988)