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Automatic exhaustive exploration of a large material space by high-performance supercomputers is crucial
for developing new functional materials. We demonstrated the efficiency of high-throughput calculations using
the all-electron Korringa-Kohn-Rostoker coherent potential approximation method with the density functional
theory for the large material space consisting of quaternary high entropy alloys, which are nonstoichiometric
and substitutionally disordered materials. The exhaustive calculations were performed for 147 630 systems
based on the AkaiKKR program package and supercomputer Fugaku, where the numerical parameters and
self-consistent convergence are automatically controlled. The large material database including the total energies,
magnetization, Curie temperature, and residual resistivity was constructed by our calculations. We used frequent
itemset mining to identify the characteristics of parcels in magnetization and Curie temperature space. We also
identified the elements that enhance the magnetization and Curie temperature and clarified the rough dependence
of the elements through regression modeling of the residual resistivity.
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I. INTRODUCTION

First-principles calculations, which can accurately inves-
tigate the electronic structures, magnetic properties, and
transport properties of materials without any empirical pa-
rameters, are effective tools for designing new functional
materials. Although there are limitations in the unit cell
sizes and the approximations for the exchange-correlation
potentials, they have been applied to several systems, such
as cathode materials [1], photovoltaic absorbers [2], and
spintronics materials [3–5], and their effectiveness has been
confirmed. Recently, with the development of computer hard-
ware and numerical algorithms, material databases have been
actively constructed from high-throughput calculations, i.e.,
exhaustive calculations, based on first-principles approaches.
By applying machine learning techniques to the constructed
material databases, one can elucidate the mechanisms behind
the physical and chemical properties in the target and acceler-
ate the discovery of new materials. The databases containing
a wide variety of material data are required to efficiently
perform machine learning. However, performing exhaustive
calculations with high speed and high accuracy for such large
material space is not easy. The validity of material-dependent
numerical parameters should always be considered. For ex-
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ample, cut-off parameters, potential mixing parameters, and
the selection of pseudopotentials affect calculation results and
convergence. We state two important criteria for constructing
material databases by automatic exhaustive calculations: (i)
the understanding of underlying physics and chemistry in tar-
get material space and (ii) the knowledge of the first-principles
calculation program package, that one uses. Automatic ex-
haustive calculations, which do not satisfy the above two
criteria might lead to unreliable material databases.

There are several material databases, such as the novel
materials discovery (NOMAD) [6], the open quantum materi-
als database (OQMD) [7,8], the automatic flow for materials
discovery (AFLOW) [9], and the materials project (MP) [10].
Regardless of the data validity, researchers can freely ac-
cess these databases and obtain useful material information.
However, they mainly focus on the electronic structures and
structural stabilities of simple substances and stoichiomet-
ric compounds. They contain no detailed data for magnetic
properties (e.g., magnetic exchange interactions and magnetic
transition temperatures) and transport properties (e.g., electric
conductivity) in nonstoichiometric systems which are essen-
tial for developing magnetic and spintronic materials. This
is because it is necessary to use a scale-bridging simulation
technique [4] and a linear response approach [11] with more
computational costs and a complicated numerical algorithm
for evaluating the above physical quantities, in addition to
a simple search of an electronic ground state within the
density functional theory (DFT) [12,13]. Another reason is
the difficulty in handling the nonstoichiometric systems in
DFT calculations. A supercell method is usually used for
treating the nonstoichiometric systems. This method can cal-
culate atomic forces and perform structural optimizations for a

2475-9953/2022/6(2)/023802(19) 023802-1 Published by the American Physical Society

https://orcid.org/0000-0001-6301-6104
https://orcid.org/0000-0002-3551-7443
https://orcid.org/0000-0002-8912-686X
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevMaterials.6.023802&domain=pdf&date_stamp=2022-02-17
https://doi.org/10.1103/PhysRevMaterials.6.023802
https://creativecommons.org/licenses/by/4.0/


FUKUSHIMA, AKAI, CHIKYOW, AND KINO PHYSICAL REVIEW MATERIALS 6, 023802 (2022)

FIG. 1. Material space for the high-throughput calculations. The target elements are indicated in the upper part. The four elements are
selected, and the BCC and FCC solid solution phases are created. The total number of systems in the material space is 147 630. In the figure,
the case of MnFePdW is shown as an example.

specific configuration. However, one requires large supercells
and huge computational costs to avoid the artificial Coulomb
interaction originating from the periodicity and investigate the
configurational dependence of the physical quantities.

In this study, we demonstrate the efficiency of high-
throughput calculations for equiatomic quaternary high en-
tropy alloys which are nonstoichiometric and configurational
disordered systems, on the basis of the all-electron Korringa-
Kohn-Rostoker (KKR) Green’s function method [14,15] with
the coherent potential approximation (CPA) [16,17]. We em-
ploy the AkaiKKR program package developed by Akai
[18,19]. The numerical parameters and convergence proce-
dure are automatically controlled. We construct a large-scale
material database, including the simple electronic structures
and the finite temperature magnetic and the transport prop-
erties without any empirical parameters. The constructed
material database is essential for screening new magnetic and
spintronic materials. Based on this large-scale database, we
also identify important elements and factors which determine
the magnetic and transport properties of equiatomic quater-
nary high entropy alloys by data science approaches.

II. TARGET MATERIAL SPACE

As a target material space, we choose quaternary high
entropy alloys with face-centered cubic (FCC) and base-
centered cubic (BCC) solid solution phases, where the four
principal elements have the same atomic concentration and
are randomly distributed in the lattices. The number of target
elements are 38 as follows: Al, Si, Sc, Ti, V, Cr, Mn, Fe, Co,
Ni, Cu, Zn, Ga, Ge, Y, Zr, Nb, Mo, Tc, Ru, Rh, Pd, Ag, Cd,

In, Sn, Hf, Ta, W, Re, Os, Ir, Pt, Au, Hg, Tl, Pb, and Bi. We
select four elements from the above target elements and form
an equiatomic quaternary high entropy alloy (Fig. 1). Since
both BCC and FCC cases are considered, the total number
of systems is 147 630. We perform exhaustive calculations
for such large material space on the flagship-supercomputing
system in Japan, Fugaku, developed by RIKEN Center for
Computational Science.

III. CALCULATION METHODS

We conducted the electronic structure calculations using
the AkaiKKR code [18], where the all-electron KKR Green’s
function method [14,15] is implemented within DFT [12,13].
The KKR Green’s function method is based on the multi-
ple scattering theory, and one electron Green’s function for
a Kohn-Sham equation is directly calculated. The electron
density of a system [ρ(r)] is obtained from the imaginary part
of the site-diagonal retarded Green’s function integrated up to
the Fermi level (EF):

ρ(r) =
∑

i

|φi(r)|2 − 1

π
lim
r′→r

×�
∫ EF

−∞
(Gs(r, r′, ε) + Gm(r, r′, ε))dε, (1)

where φi(r) is the core state, Gs(r, r′, ε) is the Green’s
function for a single-site potential (i.e., potential part), and
Gm(r, r′, ε) contains the multiple scattering effects (i.e., back
scattering part). As well as other all-electron calculation
schemes, valence and core electrons are separately handled
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FIG. 2. Complex energy contour (C1 or C2) used in the AkaiKKR
code. The energy contour ranges from the bottoms of the valence
bands (E 1

B) or semicore states (E 2
B) to the Fermi level (EF). To make it

easier to understand, density of states (DOS) is schematically shown
in the figure. η is a small imaginary part attached to EF.

in actual calculations. The Green’s function is defined for
the valence electrons, and the core electrons are treated as
in atomic-like fashion. Since the Green’s function is strongly
structured close to the real axis, one needs to many mesh
points for accurate energy integration. To avoid such prob-
lems, the energy integral is evaluated on a semicircular
contour in the complex energy plane in the AkaiKKR code,
since Green’s function is analytic in the upper half-plane
of complex energy. This procedure decreases the number of
energy mesh points and stable numerical simulations. To per-
form the energy integration in Eq. (1), we need to determine
the interval of the integration, as shown in Fig. 2. The upper
limit of the interval corresponds to EF, and the lower limit (EB)
is generally set below the valence bands (C1 in Fig. 2). When
there exist shallow semicore states, such as Zn-3d and Ga-3d
states, we should include these states in energy contour (C2

in Fig. 2); otherwise, wrong electronic structures, magnetism,
and transport properties will be obtained for alloy systems
containing the above elements. A small imaginary part (η) is
attached to EF in actual calculations since Green’s function
cannot be defined due to a branch cut along a positive real
axis; however such a problem does not occur at the bottom of
the interval. This imaginary part yields smearing effects and
results in numerical stability, particularly for metallic systems.
Other smearing methods (e.g., Gaussian and Fermi-Dirac
distribution functions) are not used in the AkaiKKR code.
Typically, η = 10−3–10−4 Ry is employed for self-consistent
calculations. Although a smaller η produces a secure calcula-
tion result, many k-point meshes are required for convergence.
To obtain the accurate electronic structures and good con-
vergence properties in the high-throughput calculations, the
energy width and η should be automatically determined.

The Curie temperatures are evaluated based on a scale-
bridging method, where first-principles calculations of mag-
netic exchange interactions (Ji j) are coupled to the classical
Heisenberg model. We employ Liechtenstein’s formula with
the magnetic force theorem for calculating Ji j [20]:

Ji j = 1

4π
�

∫ EF

dE TrL
{
�iT

i j
↑ � jT

i j
↓

}
, (2)

where �i = t−1
i↑ − t−1

i↓ , with ti↑(↓) being the single-site t-
matrix at site i for the spin-up (down) state. These quantities

are evaluated using the ground state potential determined by
self-consistent calculations. T i j

↑(↓) is the scattering path opera-
tor between sites i and j for the spin up (down) state. TrL is the
trace over the orbital variables, i.e., azimuthal l and magnetic
m quantum numbers. If the Ji j values are obtained, one can
estimate TC using the mean-field approximation, cluster-like
approximation [21,22], Tyablicov approximation [23,24], and
Monte Carlo simulation. The above approach has been applied
to several disordered materials [4,25]. Here, we use the mean-
field approximation. Although the mean-field approximation
tends to overestimate the experimentally observed TC, it is
considered that the chemical trend can be acquired.

For the transport property of the target materials, we
focus on the residual electric resistivity. Generally, frequency-
dependent electric conductivity tensors are described by
linear-response theory[26]. A more practical calculation
scheme for the diagonal part of the conductivity tensor
along the z direction (σzz) of an atomic disordered system is
Kubo-Greenwood formula [27]. In terms of retarded Green’s
function (G+(ε)), σzz is written as

σzz(ε) = h̄

πV
Tr〈 ĵz�G+(ε) ĵz�G+(ε)〉conf . (3)

Here, V is the volume of the unit cell, ĵz is the current oper-
ator, and 〈. . . 〉conf means a configuration average of possible
atomic disorders. Butler presented a prescription to calculate
Eq. (3) in the framework of KKR Green’s function formalism,
and showed that 〈. . . 〉conf can be treated by the CPA approach.
The matrix elements of ĵz are calculated using on the energy
shell solution of the single-site Schrödinger equation. We
employ the same expression as Butler’s. Readers can find the
details of this formula in Refs. [11,28]. In our calculations,
vertex corrections are included.

IV. CALCULATION CONDITIONS

The high-throughput calculations are performed under the
condition that the atomic arrangements of the equiatomic
quaternary high entropy alloys are completely random. The
atomic disorders are treated using the CPA approach. In the
CPA approach, the multiple scattering effects due to the impu-
rity potentials are replaced by an effective medium described
by coherent t-matrix [16,17]. CPA can efficiently calculate
disordered systems without using a large supercell, leading
to the significant reduction of computational costs. We no-
tice here that since CPA is a single-site approach, the local
environment effect, short-range atomic order, and structural
optimization, are not considered. These effects lead to lattice
distortion and sometimes affect the local electronic structure
and magnetism in high entropy alloys. However, it also has to
be noticed that Fukushima et al. and Ogura et al. showed that,
for CrFeCoNi and AlxCrFeCoNi with random solid solution
phase, the configurational averaged quantities by CPA are
consistent with the results of the large-scale supercell calcula-
tions [29,30].

The lattice constants are estimated from the atomic volume
of each constituent element observed in experiments [31]. The
exchange-correlation parts are treated using the generalized
gradient approximation parametrization of Perdew, Becke,
and Erzenhof (PBE) [32]. Although the angular momentum
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cutoff, lmax = 2, gives reasonable results for the magnetic
moments and TC, the conductivity calculations are sensitive
to lmax. Therefore we use lmax = 3 to include f -scattering
effects [28]. The overlapping atomic sphere approximation
(ASA) is used in the high-throughput calculations. When
calculating atomic t-matrix, the same atomic sphere radius
for each constituent element is employed. The space integral
for the current operator in the Kubo-Greenwood formula is
taken for this atomic sphere. The relativistic effects are in-
cluded through the scalar relativistic approximation [33] and
the spin-orbit interaction is not considered. It generally affects
the electronic structure (e.g., the splitting of the core states) for
the nonmagnetic systems containing heavy elements, such as
Hg, Pb, and Bi. ASA calculations sometimes cause difficulties
in convergency, when the shallow and localized 4 f states in Hf
and Ta atoms are included in the valence states. To avoid this
difficulty, we treat these states as the core states, so that the
resonances originating from the 4 f states are eliminated [34].

First, by rough self-consistent calculations with lower k-
sampling points, we search candidates of EB (see Fig. 2),
which is more than 0.1 Ry away from the core states, semi-
core states, and the bottom of valence bands. Then, the tight
self-consistent calculations with 256 k-sampling points in the
first irreducible Brillouin zone are performed for one of the
selected EB. The number of mesh points along the complex
energy integral path is fixed to 65. We carry out the self-
consistent calculations with the small imaginary part attached
to EF, i.e., η = 10−4 Ry; however, if the convergence problem
is encountered, the condition, η = 10−3 Ry, is used. For the
BCC and FCC phases, the same interval of the energy integral
and η are chosen. Starting with the initial potential and coher-
ent t-matrix constructed from the superposition of the atomic
potentials and t-matrices, we perform the self-consistent cal-
culation of the ground state potential and coherent t-matrix.
At the beginning of the calculations, where the charge neu-
trality oscillates and the root mean square (RMS) errors for
the potential are large, we employ the Chebyshev iterative
method [35]. When the RMS error in potential becomes small,
the mixing scheme is switched to Broyden’s second-mixing
method to accelerate the convergence. During the iteration,
with reference to the history of the charge neutrality, total
magnetic moment, and RMS error, the EB, η, and mixing
parameter are appropriately adjusted. If the RMS error is
smaller than 10−6 Ry, the self-consistent iteration is stopped.
TC and transport properties are calculated using Green’s func-
tion determined by self-consistent calculation. In the transport
calculations, 34,061 k-sampling points are used and η is set to
10−5 Ry. We execute high-throughput calculations automat-
ically for the target materials space according to the above
calculation procedure.

V. RESULTS

A. Notations

First, some notations are defined. We consider a randomly
distributed solid solution, which is called high entropy al-
loys when the number of the constituent elements is many.
Let XYZW be the constituent elements for the equiatomic
quaternary high entropy alloys (HEA4). We analyze the bulk
and local properties of HEA4. Hereafter, M is the magnetiza-

TABLE I. The number of data instances in the BCC and FCC
phases and in PA (a set of all materials) and PM (a set of all magnetic
materials) and PN (a set of all nonmagnetic materials) defined in
Eqs. (4)–(6).

PA PM PN

BCC 73,145 21,900 51,245
FCC 73,143 21,205 51,938

tion in tesla (T), TC is the magnetic transition temperature in
Kelvin (K), R is the residual resistivity in μ	 cm, and mX
is the magnetic moment for the element X in μB. We use
thresholds of the local magnetic moments defined by mth,0 =
0.001 μB and mth,1 = 0.2 μB. The former is used to identify
magnetic/nonmagnetic materials explained below, the latter is
used to define the spin configuration later.

Next, several sets of elements and their combinations are
defined. Sets of 38 elements, 3d magnetic elements, and other
elements are defined as follows:

EA := {Al, Si, Sc − Ge, Y − Sn, Hf − Bi},
EM := {Cr, Mn, Fe, Co, Ni},

EN := EA/EM .

Sets of elemental combinations for all/magnetic/
nonmagnetic materials are defined as follows:

PA := {X ,Y,Z,W | X ,Y,Z,W ∈ P4(EA)}, (4)

PM := {X ,Y,Z,W | X ,Y,Z,W ∈ PA, |m(X )|
> mth,0, · · · , |m(W )| > mth,0}, (5)

PN := PA/PM , (6)

where a set formed by all k-combinations made of a set E
without any duplicates is denoted by Pk (E ). Notably, PA, PM ,
and PN in the BCC phases are different from those in the FCC
phases.

B. Overview of calculated data

Automatic exhaustive calculations were performed on
Fugaku by parallelization using 2000 nodes, where the ma-
terial space was divided into each node. Our high-throughput
calculation scheme showed that approximately 99.1% of the
material space, i.e., 146 288 of 147 630 systems, satisfied
the convergence criterion after data cleansing for apparently
strange Ga local magnetic moments and for AlMnZnBi,
which had quite large TC, but its dependence on energy width
was large. Detailed numbers are listed in Table I. The calcu-
lated data are placed in Zenodo repository [36].

C. Overall distribution of physical properties

The distributions of total magnetization per volume (M),
magnetic phase transition temperature (TC), and residual re-
sistivity (R) for PA in the BCC phase is shown in Fig. 3. (a)
shows the distribution of physical properties of PA. A large
fraction of the total magnetization is zero, which belongs to
PN . Meanwhile, the distribution and pair plot of only magnetic
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FIG. 3. Distribution and pair plot of M, TC and R of HEA4. (a) shows the histogram for PA (a set of all materials) and (b) for PM (a set of
all magnetic materials) in the BCC phase. (c) shows the histogram for PA, and (d) for PM in the FCC phase. PA and PM are defined in Eqs. (4)
and (5).

materials, PM , are shown in (b). The contribution of almost
zero total magnetization reduced, but the proportion of almost
zero magnetic TC was still large. By contrast, the shape of the
distribution of R did not change significantly between (a) and
(b), which was partly because the change in R between PM

and PN was small relative to the overall scale, although the
former had a larger R. The FCC phase had almost the same
characteristics and is shown in Figs. 3(c) and 3(d).

D. Magnetic properties

We show the characteristic features of magnetic properties;
Fig. 4 shows the scatter plots as a function of the magnetiza-
tion and TC for the (a) BCC and (b) FCC phases with markers
showing FeCoXY , FeCoNiY , MnFeCoY , MnFeNiY , and
MnFeXY , which have high Ms and high TCs. The other mate-
rials are indicated by the gray points in the figure; X and Y are
elements in EN . Their number of instances was, respectively,
625, 618, 35, 35, and 35 in the BCC phase and 529, 512, 20,
26, and 21 in the FCC phase in PM .

As XY ∈ PA, in the BCC phase, FeCoXY often has a high
TC of more than 700 K. MnFeXY had a moderate TC but a
larger M than FeCoXY , and the boundary between FeCoXY

and MnFeXY often exists with respect to TC. MnFeCoX had
the largest M and the largest TC. FeCoNiX had the largest
TC and large M. Meanwhile, in the FCC phase, separation
of FeCoXY and MnFeXY was done in the M direction.
FeCoXY had the highest TC and large M. MnFeXY had
the highest M and moderate TC. FeCoNiX had the largest
TC. MnFeCoX and MnFeNiX had the largest M. MnFeCoX
and MnFeNiX had the largest M. Notably, {MnFeCoX } ⊂
{MnFeXY} or {FeCoXY}.

FeCoXY , MnFeXY , MnFeCoX , FeCoNiX , and
MnFeNiX are separately shown in Figs. 1 and 2 of Ref. [37].
There are materials with small M and TC in both the BCC
and FCC phases. As will be shown later, the reason for the
small M is that the elements have an antiferromagnetic spin
configuration.

Next, materials with the maximum values are listed. The
top five systems with the highest Ms were MnFeCoNi, Mn-
FeCoRh, MnFeCoPt, MnFeCoIr, and MnFeCoAu in PA or PM

in the BCC phase. Their values were 1.94, 1.93, 1.89, 1.88,
and 1.76 T, respectively. The top five systems with the highest
Ms were MnFeNiAu, MnFeNiCu, MnFeCoTl, MnFeCoSn,
and CrMnCoTl in PA or PM in the FCC phase. Their values
were 1.52, 1.51, 1.49, 1.46, and 1.46 T, respectively. The
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FIG. 4. M and TC in PM (a set of all magnetic materials) in the BCC phase (a) and in the FCC phase (b). The materials containing FeCo,
MnFe, MnFeCo, FeCoNi and MnFeNi are labeled. PM is defined in Eq. (5)

correlation between M and units of the spin moment per
primitive cell is shown in Fig. 3 in Ref. [37] for reference.
The top five systems with the highest TCs were FeCoNiPd,
FeCoCuAg, MnFeCoIn, FeCoNiAg, and FeCoCuAu in PA or
PM in the BCC phase. Their values were 1220, 1207, 1204,
1204, and 1194 K, respectively. The top five systems with
the highest TCs were FeCoNiAg, FeCoNiPd, FeCoNiAu, Fe-
CoCuHg, and FeCoNiPt in PA or PM in the FCC phase. Their
values were 1144, 1137, 1109, 1090, and 1085 K, respectively.
As shown in Figs. 3 and 4, the systems with BCC phase tend
to have larger M and TC, compared to those with FCC phase.
This tendency can be also found in previous studies for high
entropy alloys [38–40].

E. Residual electrical resistivity

The top five systems with the highest Rs were ScVCrTl,
ScMnInRe, ScVYIn, ScVHfTl, and ScVYSn in PA in the BCC
phase. Their values were 213, 205, 204, 202, and 202 μ	 cm,
respectively. The top five systems with the highest Rs were Sc-
CrYBi, ScTiCrBi, ScTiCrPb, ScTiCrHg, and ScTiCrTl in PA

in the FCC phase. Their values were 186, 186, 184, 184, and
184 μ	 cm, respectively. Moreover, FeCoNiAg, FeCoCuAg,
FeCoNiCu, CoNiCuAg, and FeNiCuAg had the lowest R in
PA in the BCC phase. Their values were 1, 2, 3, 5, and
5 μ	 cm, respectively. FeCoNiAg, FeCoCuAg, CoNiCuAg,
FeNiCuAg, and FeCoNiPd had the lowest R in PA in the FCC
phase, with values as 1, 3, 5, 5, and 5 μ	 cm, respectively.

VI. DISCUSSION

A. Validation of lattice constants

In this calculation, the lattice parameter was the value
calculated from the average value of the volume of the rep-
resentative material in the experiment for each constituent
element. Fig. 5 shows the labels of the BCC and FCC phases
by Lerderer et al. [41] for the total energy difference be-
tween FCC and BCC from first-principles calculations. The
phase boundary threshold energy determined by decision tree
regression to maximize the degree of separation of the distri-

bution by mean squared error (MSE) was 0.01995 Ry, which
is indicated by the red vertical dotted line in the figure, where
the total energy is the value per primitive unit cell. Of the
480 quaternary substances labeled BCC and FCC by Lederer
et al. [41], the number of substances that were successfully
calculated was 479, and the number of substances that failed
to be classified at the energy threshold was 6. The classifi-
cation accuracy was 0.950; thus, the classification model is
valid. Although it is a side evidence, we were able to show the
validation of the lattice constants. In the case of CrFeCoNi
with FCC phase, the experimentally observed lattice constant
is 3.5665 Å [42], while the lattice constant estimated from the
atomic volume of each constituent element is 3.5789 Å.

In the experiment, when the solid solution phase appeared,
the intermetallic phase might be observed simultaneously.
Since the simultaneous presence of solid solution and inter-

FIG. 5. Binary classification of the stable structures in 480 qua-
ternary high entropy alloys. The vertical axis indicates the label of the
experimentally confirmed structure (FCC or BCC) by Lederer et al.
[41] The horizontal axis is the total energy difference between the
FCC and BCC phases by the AkaiKKR code. The threshold value of
0.01995 Ry is determined by decision tree regression and is indicated
by the vertical dashed line.
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metallic phases is advantageous for mechanical strength, one
strategy is to search for materials in which both phases tended
to appear [43,44]. For example, for FeCoMnNi, the energy
difference [E (BCC) − E (FCC)] in this study was −0.0097
Ry, which was on the side of 0.02965 Ry FCC when the phase
boundary threshold energy was added. However, Ha et al.
[45] recently reported that FeCoMnNi had the BCC phase in
thin films, implying that other materials might yield phases
different from those predicted by ab initio calculations de-
pending on the experimental setting, although 0.02965 Ry per
primitive cell was a large value. Therefore, in this study, we
did not consider the stability of the BCC and FCC phases but
performed exhaustive calculations for each phase separately.

B. Characteristic features in (M, TC) space

For areas where the distribution was sparse, their charac-
teristic features could be easily identified using a scatter plot,
but not for areas where the distribution was dense. Here, we
identify the characteristic features of the parcels in 2D physi-
cal property space, (M, TC) in PM . It may be a good choice to
execute density-based spatial clustering of applications with
noise (DBSCAN) [46,47] for density clustering. However, our
purpose is not clustering, but to identify the characteristic
features of the dataset in areas. Our dataset was large, thus fre-
quent itemset mining was useful and efficient because it could
extract common elements quickly. In this section, an area was
defined by digitizing its physical properties for simplicity. We
called the area parcel and then used frequent itemset mining
to identify characteristic features of the parcel.

We explain frequent itemset mining briefly. Frequent item-
set mining uses the transaction database, which is made of a
transaction. A transaction is made of items. There are variants
of frequent itemsets, e.g., closed and maximum itemsets. A
closed frequent itemset mining was used in this study. It is
explained according to Uno et al. [48] as follows. For itemset
P, T (P) is the set of the transactions having P. The frequency
of P is the number of transactions having P. For any two item-
sets P and Q, T (P ∪ Q) = T (P) ∩ T (Q) holds, and if P ⊆ Q
then T (Q) ⊆ T (P). An itemset P is called closed if no other
itemset Q satises T (P) = T (Q), P ⊆ Q, i.e., if it is included
in no other itemset of the same frequency. In other words, a
closed itemset has the advantage of outputting items as the
maximum set of items. There are many implementations of
frequent itemset mining. In this analysis, LCM version 5.3
was used [49–52].

A transaction corresponded to data of material in this case.
It comprised three components: (A) constituent elements of
material: element1-element4; (B) a parcel ID by digitizing
(M, TC) of each material (Fig. 6); and (C) spin configuration
of each material.

For (C), first, the local magnetizations mx were sorted in
descending order as |m1| > |m2| > |m3| > |m4|. We redefined
m1 as positive, and defined mi � mth,1 as having a magnetic
spin moment, and the ferromagnetic and antiferromagnetic
spin configurations hierarchically in terms of mi. For exam-
ple, if |m1| > |m2| > |m3| > mth,1 > |m4| and m2 < 0, m3 >

0, the spin configuration items of this material were hierar-
chically defined as the strings FA, FAF, FAFN. For |m1| >

|m2| > mth,1 > |m3| > |m4| and m2 < 0, only FA and FAN

FIG. 6. Heatmap shows the frequency of each of the 10 divisions
of M and TC along with the scatter plot in the BCC phase.

were used. Notably, FANN was not adopted since its exis-
tence was obvious because mth,1 > |m3| > |m4|. As a result,
for example, CrRuHgBi had a transaction of Cr, Ru, Hg, Bi,
parcel D4, FA, and FAN, where the last three strings were spin
configurations.

For each parcel, itemsets with a frequency of at least 10
and at least 50% of the maximum frequency of each parcel
were employed for analysis. Table II shows an example of
a closed frequent itemset when the spin configuration was
set to mth,1 = 0.2. (a) is the result of parcel E5 in the BCC
phase. The FF existed as many as the total number of trans-
actions, 172: all materials had the FF spin configuration.
The frequency of both Mn and FF was 145: the number of
materials containing Mn with the FF spin configuration was
145. Similarly, the number of materials containing Mn and
Co with the FF spin configuration was 117. The number of
materials with the FFA and FF spin configuration was 89. The
number of materials containing Mn with the FFA and FF spin

TABLE II. (a) Closed frequent itemset of the parcel (E5) in the
BCC phase. The total number of transactions in the parcel is 172. (b)
The closed frequent itemset of the parcel (E8) in the BCC phase. The
total number of transactions in the parcel is 10.

(a) Items Frequency

1 FF 172
2 Mn, FF 145
3 Co, Mn, FF 117
4 FFA, FF 89
5 Mn, FFA, FF 87
(b) Items Frequency

1 Mn, FF, FFF 10
2 Fe, Mn, FFF, FF 8
3 Fe, Mn, FFFN, FFF, FF 7
4 Rh, Mn, FFF, FF 5
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configuration was 87. Because FFA ⊂ FF, which is a physical
interpretation and is beyond the itemset mining operation, Mn,
FFA and FF were interpreted as materials containing Mn with
the FFA spin configuration.

(B) is the closed frequent itemset of parcel E8. The materi-
als containing Mn and FFF were 10. The materials containing
Fe, Mn, and FFF were eight. The materials containing Fe,
Mn, and FFFN are seven. The materials containing Rh, Mn,
and FFF are five. For reference, the transactions in parcel E8
are shown in Table I of Ref. [37]. In Fig. 7 (see below), for
example, when both Co and Mn were included, they were
connected by an underscore: Co_Mn.

First, the number of transactions in each parcel, which was
digitized by dividing M and TC into 10 parts, respectively, are
shown in Fig. 7(a) in the BCC phase. The parcels were colored
according to their number of transactions and shaded when
the number was less than 10. Parcels A3, A4, C2, and D3 had
particularly large numbers of materials–3991, 2452, 3230, and
2930 transactions, respectively. In the following, we examine
the constituent elements and spin configurations.

Figure 7(b) shows the combination of elements in each
plot with letters. The elemental features of parcel E5 corre-
sponding to Table II(a) were Mn and Co_Mn. The elemental
features were Mn, Fe_Mn, and Rh_Mn in parcel E8 cor-
responding to Table II(b). Figure 7(c) shows the spin
configuration with the highest frequency in each parcel. For
example, parcel E5 was FF, and cell E8 was FFF. Notably, the
magnetization was sorted in the descending order of absolute
value, which did not correspond to the order of the elements
shown in Fig. 7(b) because there were third and fourth ele-
ments.

As shown in Fig. 7(b), Fe, Co, and Mn were the most
frequently detected elements. The lower right region of the
figure, where M was large and TC was small, was dominated
by Mn, whereas, the upper left region, where M was small
and TC was large, was dominated by Fe and Co. Parcel D3
was Fe-dominated, but the spin configuration above 50% was
unidentified, which meant that a few spin configurations were
mixed. Parcel A3 was Mn-dominated, and the spin configu-
ration was FA. Parcel A4 had the same Mn dominance, but
there was no majority in spin configurations, or a few spin
configurations were mixed.

This is a repeat of the previous example; we now consider
parcels where the number of transactions is small but M or TC

are large. For example, parcel I6, which had a high TC, had the
FF spin configuration and comprised mainly CoFeXY , a ma-
terial containing both Co and Fe. Parcel E8, which had a large
M and an FFF spin configuration comprised mainly MnXYZ ,
FeMnXY , and MnRhXY . Refer to Table I of Ref. [37] for the
corresponding items.

We consider changes in neighboring Parcel. For example,
from parcel A3 to A5, there was a change from a predom-
inantly Mn and FA configuration in A3 to a predominantly
Mn and mixed spin configurations in A4, and then to a pre-
dominantly Mn and Ni and FF spin configuration in A5. Next,
consider parcels E2–E4, Fe had the same predominance, but
different spin configurations were observed: parcel E2 was
FA, parcel E3 was interspersed with a few spin configura-
tions, and parcel E4 was FF. This is a change in the spin
configuration of the second through fourth elements. In ad-

FIG. 7. Main features of parcels where M and TC are divided into
10 parts in the BCC phase. (a) shows the number of transactions,
(b) shows the elemental features, and (c) shows the most frequent
spin configuration. The parcels are colored corresponding to their
numbers of transactions and shaded when they are less than 10.
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FIG. 8. Distribution of |m(W )| in the BCC phase. The vertical axis represents |m(W )| and the horizontal axis represents the occurrence.
Each panel is arranged according to the position of the element on the periodic table. The detailed explanation is given in the main body.

dition, the neighboring F4 was dominated by not only Fe but
also Co. The scatter plots of FA, FN, and FF spin configu-
rations for Mn, Fe, and Co, respectively, are shown in Fig. 4
of Ref. [37], where the alpha transparency must be tuned to
preproduce the above knowledge.

The same analysis for the FCC phase is shown in Figs. 5
and 6 of Ref. [37]. In the 10 × 10 parcels, the area where
FN was dominant was larger in the FCC phase. The coarse-
graining of 10 divisions in a 2D space of (M, TC) was
performed here to illustrate with letters, but it was possible
to create fine parcels in a 3D space of (M, TC, electrical
resistivity). According to the illustration using a scatter plot,
the impression may change depending on how it is drawn, but
it is possible to identify the features quantitatively and quickly
by frequent itemset mining.

C. Local magnetic moment

Magnetic properties can be discussed in terms of the spin
magnitude of each element and the spin correlation between
elements. First, the spin magnitude of each element is dis-
cussed, followed by the spin correlation between elements.

Figure 8 shows the distribution of |m(W )| in the BCC
phase. The vertical axis represents |m(W )|, and the horizontal
axis represents the occurrence. Each panel was arranged ac-
cording to the position of the element on the periodic table.
The vertical and horizontal scales of each panel were the
same. The scale of the vertical axis was from 0 to 4.492 μB.
The red horizontal lines indicate the maximum and minimum
values of each distribution. If the red horizontal lines coincide
with the upper and lower frames, the horizontal lines of the
maximum and minimum values are invisible.

Although V and Tc favored antiparallel spin configuration
for Mn, Fe, Co, and Ni, Os often had parallel spin configu-
ration, thus expected to have high total magnetization and a
large contribution to TC. Unfortunately, as will be shown later,
the contribution to the maximum total magnetization of Os
was not large.

The elements, X , in EM could have |m(X )| close to zero
depending on the material, which is shown as lower horizontal
lines. However, the peaks of the maximum values were mainly

at large finite values: the magnetization was finite regardless
of the constituent elements. This agreed with the knowledge
of magnetic materials. Moreover, V, Tc, Ru, and Os showed
relatively large changes depending on the element combina-
tion. The results were the same in the FCC phase (Fig. 8 in
Ref. [37]).

D. Two-body spin-spin correlations

The Slater-Pauling curve [53,54] is famous for the total
magnetization of alloys. The spin correlations between ele-
ments are known to be antiparallel in the local spins between
early and late transition metals and parallel in the spins be-
tween late transition metals. We have already shown that some
spin configurations are mixed in the (M, TC) space. Here, we
define the number of two-body parallel (F) and antiparallel
(AF) spin configurations between elements as follows:

nXY (AF) =
∑

{X ,Y|X ,Y∈P2(EA )}
θ (|mX | > mth,1)

× θ (|mY | > mth,1)θ (mX mY < 0), (7)

nXY (F) =
∑

{X ,Y|X ,Y∈P2(EA )}
θ (|mX | > mth,1)

× θ (|mY | > mth,1)θ (mX mY > 0), (8)

where θ (x) is the Heaviside step function.
The nXY (AF) and nXY (F) of the BCC phase are shown

in Fig. 9. (a) denotes nXY (AF); Ti, V, Mn, and Fe in 3d , Zr,
Nb, Mo, Tc, and Ru in 4d , and Ta, W, Re, and Os in 5d have
large numbers of antiparallel spin configurations for Cr; Sc,
Ti, V, and Cr in 3d , Y, Zr, Nb, Mo, and Tc in 4d , and Hf,
Ta, W, and Re in 5d had large numbers of antiparallel spin
configurations for Mn. Fe had a large number of antiparallel
spin configurations for Sc, Ti, V, and Cr in 3d , Y, Zr, Nb, and
Mo in 4d , and Hf, Ta, and W in 5d . Co had a relatively large
number of Sc, Ti, and V in 3d , Y and Zr in 4d , and Hf in
5d , oriented in antiparallel spins. As the elements changed
from Cr to Mn to Fe to Co, the region of elements showing
antiparallel spin configurations narrowed to the upper left side
of the periodic table.
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FIG. 9. (a) nXY (AF) and (b) nXY (F) when mth,1 = 0.2 μB in the
BCC phase. See also the definition in the main text.

(b) shows nXY (F); for Cr, there were large numbers of par-
allel spin configurations of Fe, Co, and Ni; for Mn, in addition
to Fe, Co, and Ni, there were large numbers of parallel spin
configurations of Ru, Rh, and Ir in 4d and 5d; for Fe, there
were large numbers of parallel spin configurations of Mn, Co,
and Ni in 3d , Rh and Ph in 4d , and Os and Ir in 5d; for Co,
there were large numbers of parallel spin configurations of Cr,
Mn, Fe, and Ni in 3d , Tc, Rh, and Ru in 4d , and Os and Ir in
5d . With the change from Cr to Mn, Fe, and Co, the area of
elements showing parallel spin configurations widened to the
left and right of the group and the bottom of 4d and 5d in the
periodic table.

The same analysis for FCC is shown in Fig. 9 of Ref. [37].
Though FCC had slightly less magnetic material, there was a
similar trend for the FCC and BCC phases.

E. Effective additive elements to the magnetic properties

1. Definitions

Magnetic binary alloys and magnetic impurities have been
studied [53–57]. It is well known that alloy systems, including
3d transition metals with both localized and itinerant charac-
teristics, such as Cr, Mn, Fe, Co, and Ni, exhibit interesting
magnetic properties. Consider the situation where magnetic
impurities are doped into ferromagnetic Fe, Co, and Ni. When
the dopants are early transition metals, such as Sc, Ti, V, and
Cr, the impurity induced narrow virtual bound states were
generated around EF due to the repulsing potentials. These
virtual bound states were negatively polarized in the opposite
direction to the parent element, thereby decreasing the total
magnetic moment. Mn is a critical atom in which the direc-
tion of the magnetic moment is sensitive to the parent lattice
constant and exchange-correlation potential [55–57].

Further, Pd is known to increase the local magnetization
of nearby Ni atoms [58] and is expected to improve magnetic
properties as an additive element. In fact, a material search
including Rh, which is a neighboring element of Pd, has been
conducted [59]. In this section, we analyze how much EN

improves the physical properties of EM .
Closed frequent itemset mining of (M, TC) identified

high-frequency regions. In this section, we identify the low-
frequency regions. We define EW ∈ EN , and the contribution
of EW to the elements {X ,Y | X ,Y ∈ P2(EM )} is evaluated
by

�F2(X ,Y ; EW ) = F2(X ,Y ) − F loo
2 (X ,Y; EW ), (9)

where

F2(X ,Y ) = max
Z,W∈P2(EN )

F (X ,Y,Z,W ), (10)

F loo
2 (X ,Y; EW ) = max

Z,W∈P2(EN −EW )
F (X ,Y,Z,W ), (11)

and superscript loo is an abbreviation for leave-one-out.
Function F (X ,Y,Z,W ) was assumed to be M or TC of

the material, XYZW . Similarly, the equations were defined
when three and one elements were chosen from EM and EN ,
respectively, without duplication and when one and three el-
ements were chosen from EM and EN , respectively, without
duplication as

�F3(X ,Y,Z; EW ) = F3(X ,Y,Z ) − F loo
3 (X ,Y,Z; EW ),

(12)

�F1(X ; EW ) = F1(X ) − F loo
1 (X ; EW ). (13)

2. Magnetization

Figure 10(a) shows M1(X ), M2(X ,Y ), and M3(X ,Y,Z )
in the BCC phase. The horizontal axis represents the
combination from Pk (EM ). When {X ,Y,Z,W | X ∈
P1(EM ),Y,Z,W ∈ P3(EN )}, {Cr}, {Fe}, and {Mn};
when {X ,Y,Z,W | X ,Y ∈ P2(EM ),Z,W ∈ P2(EN )},
{Mn,Fe}, {Mn,Co}, {Fe,Co}, and {Cr,Mn}; and
when {X ,Y,Z,W | X ,Y,Z ∈ P3(EM ),W ∈ P1(EN )},
{Mn,Fe,Co}, {Mn,Fe,Ni}, and {Cr,Mn,Fe} exhibit relatively
large total magnetization.
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FIG. 10. (a) Combination from Pk (EM ) (in the horizontal axis) versus Mk (EM ) (in the vertical axis) are plotted in the BCC phase. The unit
of the vertical axis is μB/Bohr3. (b) Heatmaps of �M1(X ; EW ), �M2(X ,Y; EW ), and �M3(X ,Y,Z; EW ) (in the vertical axis) in the BCC
phase, where EW := {W | W ∈ EN } (in the horizontal axis). Mk (X ) and �Mk (X ) are defined in Eqs. (9)–(13) in Sec. VI E 1. The examples
of the combinations from Pk (EM ) are shown in Sec. VI E 2.

Figure 10(b) shows �M1(X ; EW ), �M2(X ,Y; EW ), and
�M3(X ,Y,Z; EW ), where EW := {W | W ∈ EN }. The ver-
tical axis represents Pk (EM ). The horizontal axis rep-
resents EW . We will examine the case of large total
magnetization in the previous paragraph. The largest con-
tributions to �M1(Cr; EW ) is given by EW ={V}, {Sn},
and {Bi}. The largest contribution to �M2(Mn, Fe; EW ),
�M2(Mn, Co; EW ), and �M2(Fe, Co; EW ) is given by
EW ={Rh}. The largest contribution to �M2(Cr, Mn; EW )
is given by EW ={Pd} and {Sn}. The largest contribu-
tion to �M3(Mn, Fe, Co; EW ), �M3(Mn, Fe, Ni; EW ), and
�M3(Cr, Mn, Fe; EW ) is given by EW ={Rh}.

Rh and Pd contribute significantly, but, as mentioned
above, V, Sn, Bi, and Tl also contribute significantly. Notably,

the analysis of Fig. 10 is for the case where only one ele-
ment was selected from EW , and for example, �M1(X ; EW )
might be lowered when two elements were selected from
EW . Notably, the analysis was vulnerable when there were
anomalous large values at the highest physical quantity. The
same analysis for the FCC phase is performed in Fig. 10 of
Ref. [37].

3. Curie temperature

Takahashi et al. proposed, by first-principles calculations,
that TC of binary alloys possesses somewhat similar behavior
to the Slater-Pauling curve [25]. They showed that introducing
a small amount of early transition metals, such as V and Cr, to
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FIG. 11. (a) Vertical axis shows TC,1(X ), TC,2(X ,Y ), and TC,3(X ,Y,Z ). The horizontal axis is the combination from Pk (EM ). The unit
of the vertical axis is K. (b) Heat maps of �TC,1(X ; EW ), �TC,2(X ,Y; EW ), and �TC,3(X ,Y,Z; EW ) (in the vertical axis) in the BCC phase,
where EW := {W | W ∈ EN } (in the horizontal axis). TC,k (X ) and �TC,k (X ) are defined in Eqs. (9)–(13) in Sec. VI E 1. The examples of the
combinations from Pk (EM ) are shown in Sec. VI E 2.

BCC-Fe increased TC. Here, the effect to TC was examined
in HEA4, the atomic concentration of which was as much
as (i.e., 25%), larger than of Ref. [25], where the maximum
doping was 10%.

Figure 11(a) shows TC,1(X ), TC,2(X ,Y ), and
TC,3(X ,Y,Z ) in the vertical axis. The horizontal axis
represents Pk (EM ). {Fe,Co} for {X ,Y,Z,W | X ,Y ∈
P2(EM ),Z,W ∈ P2(EN )}, and {Cr,Fe,Co}, {Mn,Fe,Co},
and {Fe,Co,Ni} for {X ,Y,Z,W | X ,Y,Z ∈ P3(EM ),W ∈
P1(EN )} show large TCs.

Figure 11(b) shows �TC,1(X ; EW ), �TC,2(X ,Y; EW ), and
�TC,3(X, Y, Z; EW ). Pk (EM ) is shown in the vertical axis and
EW in the horizontal axis. The analysis was performed for
materials that showed large TCs in the previous paragraph.

The largest contributions to �TC,1(Fe; EW ) are given by
EW ={Cu}, {Zn}, and {Hg}. The largest contribution
to �TC,1(Co; EW ) is given by EW ={Pd}. The largest
contribution to �TC,2(Fe, Co; EW ) is given by EW ={Cu}.
The largest contribution to �TC,3(Cr, Fe, Co; EW )
is given by EW ={Cu}. The largest contribution to
�TC,3(Mn, Fe, Co; EW ) is given by EW ={Ag}. The largest
contribution to �TC,3(Fe, Co, Ni; EW ) is given by EW ={Pd}.
In summary, not only Pd but also Cu, Zn, Ag, and Hg
significantly contributed to TCs. The same analysis for the
FCC phase is performed in Fig. 11 of Ref. [37].

It is well known that the mean-field approximation tends
to overestimate TC. There are several other approaches for
estimating TC in the scale-bridging method, such as the
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cluster-like approximation [21,22], Tyablicov approxima-
tion [23,24], and Monte Carlo simulation. In particular, the
Tyablicov approximation and Monte Carlo simulation, which
can consider a magnetic percolation effect, can give a rather
accurate estimation. Reference [4] considered that the present
chemical trend of TC changes depending on the evaluating
methods. It is worthwhile to compare our exhaustive calcu-
lation and previous studies. The experimentally observed TC

of CrFeCoNi with FCC phase is 130 K [42]. There also exists
the previous study for the estimation of TC by exact muffin-tin
orbital (EMTO)-CPA method, where the obtained TC is 156 K
[60]. On the other hand, our calculated value of TC is 423 K.
One of the reasons why our calculated value is larger than
the experimental result might be an error in the mean field
approximation. Also a possible reason is that Ji j in itinerant
systems generally depends on temperature. As for this point,
in the previous EMTO-CPA study the TC was estimated by
the mean-filed approximation based on the total energy dif-
ference between ferromagnetic and local moment disordered
(LMD) states. In our exhaustive calculation, TC is estimated by
combining the mean-field approximation with Ji j calculated in
a ferromagnetic CPA medium. The discrepancy between our
result and the EMTO-CPA-LMD study comes from the effects
of the spin scatterings. In the present material space, there
are systems which do not have LMD solutions (e.g., systems
with small local magnetic moments). Therefore we performed
the exhaustive calculations for TC using Ji j calculated in a
ferromagnetic CPA medium.

F. Residual electrical resistivity

This study has exhaustive data, and data-driven science is
useful for testing hypotheses. The electrical resistivity of mag-
netic materials is generally explained as a combination of a
large d-electron partial density of states (PDOS) and spin dis-
order, i.e., a small d-electron PDOS with a majority spin and a
large d-electron PDOS with a minority spin, which results in a
large (residual) electrical resistivity [61–63]. However, it was
impossible to give a valid prediction model using PDOS as
an explanatory variable for all materials, which might be sim-
ilar to the situation where, for example, the superconducting
transition dependence on the doping level was discussed as
intrinsic in Cuprate high-temperature superconductors scales
among different materials [64]. However, when looking for
correlations for the superconducting transition temperature
among all materials, changes in materials, such as LSCO and
YBCO, are more important for the superconducting transition
temperature.

Further, the regression model of a material series that
changes only W in XYZW had some predictive performance
values, but the PDOS of the d electrons with large minority
spin was not an important explanatory variable. The reason
PDOS, which takes a k sum, was not a good explanatory
variable was that the height of the peak or imaginary part
corresponding to the eigenenergy of the Green function of
CPA on the Fermi level greatly differed for different k points.
It may be understood that the k point that significantly con-
tributes to electrical conduction is only a part of the Fermi
level [18,65]. Notably, there were cases in which the large
PDOS of d electrons and spin disorder can be qualitatively

TABLE III. Regression methods for the resistivity, method of
making explanatory variables, and R2

test in the BCC phase are shown.
X1 means the explanatory variables as they are, and X2 and X3
mean the squared and cubed explanatory variables are added to the
explanatory variables.

Regression method Explanatory variables R2
test

Linear regression X1 0.754
Linear regression X1, X2 0.815
Linear regression X1, X2, X3 0.840
Random forest regression X1 0.964
k-neighbors regression X1 0.941

explained as contributing to the large electrical resistance.
The results of the data analysis showed that numerous cases
could not be regressed using the conventional explanations
because the correlation was determined by a large number of
characteristics of the data instances; most cases could not be
regressed using the conventional explanation alone.

In the previous paragraph, the explanatory variable was
PDOS, but in this paragraph, the regression is conducted
using different explanatory variables. We used 40 explanatory
variables made by the periodic table properties, (1) group, (2)
row, and elemental physical properties, (3) electronegativity,
(4) atomic radius, (5) atomic radius calculated, (6) thermal
conductivity, (7) boiling point, (8) melting point, (9) molar
volume, and (10) logarithm of electrical resistivity by ap-
plying (mean, standard deviation, min, max) to satisfy the
elemental order invariance. Although these exhaustive cal-
culation data were for isometric HEA, it was expected that
these explanatory variables could also be used for HEA close
to isometric HEA, and these explanatory variables could be
reasonably applied to unknown data other than these data, so
the prediction problem was considered. In the following, the
explanatory variable, for example, generated by group and
std, which is an abbreviation of the standard deviation are
connected by underscores and denoted as group_std.

Table III shows the coefficient of determination (R2
test) ob-

tained by dividing R observations in PA for the BCC phase
into single training and test datasets at a ratio of 7:3, and
using the test dataset to obtain a predictive evaluation index.
Linear, random forest, and k-neighbor regressions were used
as regression methods. In linear regression, up to the first,
second, and third power of the explanatory variables were
used. In linear regression, when we used up to the third power
of the explanatory variables, we obtained about R2

test = 0.840.
Moreover, for the random forest and k-neighbors regressions,
we obtained R2

test = 0.964 and 0.941, respectively. Although
the high predictive performance of the random forest regres-
sion might be an artifact of the decomposition tree, we showed
that the k-neighbor regression using correlation (similarity)
had R2

test comparable to the random forest regression. The
same analysis for the FCC phase is performed in Table II of
Ref. [37], which gives a slightly lower prediction performance
but a reasonable enough prediction model. The observed
versus predicted R values of the test set by a k-neighbor
regression is depicted in Figs. 13 and 14 of Ref. [37].

Here, the number of neighbors and explanatory variables
of the k-neighbor regression are optimized as follows. First,
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the only evaluation measure in supervised learning is the
agreement of the supervised data with the target variables,
and the importance of the explanatory variable was evaluated
from the decrease in R2

test by permutation importance, which
randomized the explanatory variables. For the optimization of
explanatory variables, we gradually excluded an explanatory
variable with the lowest permutation importance and obtained
explanatory variables and R2

test in the BCC phase (Table III of
Ref. [37]).

According to Table III in Ref. [37], the regression model
with each number of explanatory variables contained group_*
explanatory variables in many cases. Since this was no ex-
haustive model search, it might be an artifact of the selection
algorithm for the explanatory variables. However, from these
results, we can hypothesize that we could understand the trend
of electrical conductivity from the periodic table variables.
According to this hypothesis, we newly created explanatory
variables by acting (mean, stddev, min, max) on the rows and
columns of the periodic table, and conducted an exhaustive
search of 28 − 1 regression models with the k-neighbor re-
gression, where the number of neighbors was optimized.

Regression models are approximate models, and one
explanatory variable can often be supplemented by the combi-
nation of other explanatory variables. So, a regression model
with another explanatory variable that is completely different
from the best regression model may have almost the same
evaluation index value. Therefore the explanatory variables
important in a given regression model differ from those im-
portant in the set of (all) regression models. As methods to
evaluate the important explanatory variables from the search
model set, the following methods have been proposed. The
method of arranging explanatory variables in the form of heat
maps for evaluation index values [66–69], relevance anal-
ysis [70,71], which uses the leave-one-out and add-one-in
approach, and subgroup relevance analysis [72,73], which
defines explanatory variable groups using domain knowledge
and performs the group leave-one-out, add-one-in approach,
and evaluating the degree of separation of distributions [74].
Each method is suitable for different purposes. In this pa-
per, strong relevance analysis and R2

test distribution were used
together, and closed frequent itemset mining was used to iden-
tify the common features of the area in the R2

test distribution.
Figure 12(a) shows histograms of R2

A :=
{∀k, R2

test (p1, . . . , pk ) | p1, . . . , pk ∈ Pk (V )} and R2
W :=

{∀k, R2
test (p1, . . . , pk ) | p1, . . . , pk ∈ Pk (V − VW )}, where

V := {group, row} × {min, max, ave, std} and VW := {W |
W ∈ V }. The evaluation index by strong relevance analysis
[70,71] is defined as follows:

�R2(EW ) = max
∀k,{p1,...,pk}∈Pk (V )

R2
test (p1, . . . , pk )

− max
∀k,{p1,...,pk}∈Pk (V −VW )

R2
test (p1, . . . , pk ). (14)

When VW := {group_mean} or {group_std}, �R2(EW ) was as
large as 0.095 or 0.049, respectively.

To show the importance of group_mean and group_std,
we analyzed the distribution histogram of R2 again using a
different method. In Fig. 12(a), several regions were sep-
arated by bin appear. The data in these regions could be
interpreted as a transaction database where the explanatory

FIG. 12. Occurrence of the coefficient of determination
(R2) for the resistivity by the regression model exhaustive
search is shown as histograms in (a) and (b). The abscissas
in (a) and (b) are common and R2. (a) shows histograms of
R2

A := {∀k, R2
test (p1, . . . , pk ) | p1, . . . , pk ∈ Pk (V )} and R2

W :=
{∀k, R2

test (p1, . . . , pk ) | p1, . . . , pk ∈ Pk (V − VW )}, where V :=
{group, row} × {min, max, mean, std} and VW := {W | W ∈ V }.
(b) shows the common explanatory variables identified by closed
frequent itemset mining. Both figures are for the BCC phase.

variables were items, so they could be easily identified by
frequent itemset mining. Figure 12(b) shows the explanatory
variables that are always included (the frequency is the same
as the number of transactions) in those regions by hatch. For
example, the region with the highest R2

test > 0.80 always con-
tained the explanatory variables–group_mean and group_std.
As shown in SM Table V [37], R2

test = 0.77 used group_mean
and group_std. In the region where R2

test was higher than
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(a) (b) (c) (d)

FIG. 13. Resistivities (R(X ,Y,Z,W )) are shown in the BCC phase, where XYZ is the element indicated in the figure. The radii of the
circles represent the value of R. The scale of R is the same in all figures. For example, in the upper left diagram, XYZ are Fe, Cr, and Ni, and
W is the element located at the position in the diagram that mimics the periodic table. The element located at (row, column) = (4,3) in the
diagram representing the periodic table is Sc, then its radius corresponds to R(Fe, Cr, Ni, Sc). The radius at (4,4) shows the value of R(Fe, Cr,
Ni, Ti), (5,3) does R(Fe, Cr, Ni, V) and so on.

this, the model had a structure where the other explanatory
variables were added to group_mean and group_std. The same
results were obtained for FCC. We show them in Table VI and
Fig. 14 of Ref. [37].

From the above analysis, it was expected that R varied
mainly in group_mean and group_std, which were made of the
columns of the periodic table of the constituent elements. To
concretely confirm this hypothesis, the bubble chart (Fig. 13)
shows R when elements XYZ were fixed and W was var-
ied. The size of the ellipse was the magnitude of R, and the
same minimum and maximum value of R was used for all
panels. The elements XYZ were the elements indicated in
the figure, and element W was the element that simulates
the periodic table. In Fig. 13, the groups of XYZ were the
same for each column (a)–(d), but the combinations of rows
changed for each column. Each row used row 4, row 5, row 6,
and row (3,4,5), row (3,6,5) from the top as XYZ elements.
Specifically, Fig. 13(a) is FeCoNiW , (b) is PuRhPdW , (c) is
OsIrPtW , and (d) is FeIrPdW , where W is the element of each
cell.

We consider the characteristics of each row. For example,
in row (a), the R values of W = Cr, Cu were slightly smaller
than those of other rows, but the row direction was almost
unchanged, and the column direction changed. In (b), all radii
appeared to be almost the same. In (c), Y had a large R;
otherwise, there was no row dependence, and R increased in
the group direction away from the element used in XYZ .
(d) had a small R from Cr to Co, but, except for that, there
was no row dependence and R became larger in the group
direction away from the elements used in XYZ . In sum-
mary, R mainly changed in response to changes in the group
direction.

Next, we compare each column. In (a) and (b), the
group_mean was almost the same, but the group_std differed
a lot. R in (a) was smaller in the center of the group than on
both sides of the group, whereas R in (b) was the same with
almost no group dependence.

(a), (c), and (d) are comparisons for the cases where the
group_std was the same but the group_mean was different.
In this case, the value of R was smaller when the W element
was closer to the group_mean. In addition, by comparing (c)
and (d), the maximum value of R in case (c) appeared to be
larger than the maximum value of R in case (d). group_max
or group_min needed to be added to represent this. The same
analysis for the FCC phase is shown in Fig. 15 of Ref. [37].

It is also known that the addition of variable elemental
additives to Cu or Al change the resistivity ratios in a similar
way, mainly due to differences in the periodic table groups
for the host elements in experiments [75]. The law shown in
Fig. 13 is a more general one covering elements from group
3 to 14 and Bi (group 15) for HEA4, compared to the one in
Ref. [75] for Cu and Al. Although much more verification is
needed, this law may be generally true for the resistivity ratios
of alloys, and may be useful to search for materials with the
expected resistivity ratios.

G. Magnetic materials consisting of non-3d magnetic elements

There are 24 materials with relatively high TCs in the BCC
phase, e.g., TC of more than 300 K. The top 10 are listed
in Table IV. Closed frequent itemset mining for TC � 300 K
showed that Bi had frequency 23, Ru had frequency 22, and
the case where both Ru and Bi are included had frequency 21.
The maximum TC for the FCC phase was lower than 300 K,

023802-15



FUKUSHIMA, AKAI, CHIKYOW, AND KINO PHYSICAL REVIEW MATERIALS 6, 023802 (2022)

TABLE IV. A list of the top 10 materials that have the BCC
phase, consist of nonmagnetic elements, and have high TCs.

Name TC (K)

RuTlPbBi 345
RuPdTlBi 330
RuPdHgBi 329
RuAuTlBi 326
RuPtTlBi 324
RuAgHgBi 323
RuPdPbBi 323
RuHgPbBi 322
RuAuHgBi 321
RuAgTlBi 317

and there were 20 items with TC � 200 K. Item Ru had 19
subitems, Bi: 17, Ri_Ru: 16. The details of the FCC phase
are shown in SM Table VII [37]. The magnetism of these
materials could be an artifact of the large local moments of
Ru and V. However, the distribution of the local moments of
Ru and V showed a gentle change. It would be interesting to
find materials without 3d transition metals and with a high
TC, although it is necessary to have a solid solution phase and
uniform elemental distribution.

H. Comments related to the synthesis conditions

Finally, comments related to the synthesis conditions at
high temperatures are presented. The materials in the solid
solution phase are in the paramagnetic state or their mag-
netizations are very small. In this case, interactions between
elemental atoms other than local spins and the entropy con-
tribution at high temperatures were expected to dominate and
determine the elemental distributions. Although high (middle)
entropy alloys were not the most stable at room temperature,
they existed as a fixed elemental configuration because the
mobility of atoms was sufficiently small that atomic migration
seldom occurred. Depending on the combination of atoms,
magnetic solutions existed at room temperature, and mag-
netization was generated on each atom. If the magnetization
was large, a locally stable competing solution is possible with
respect to the direction of the magnetization. If the spin-spin
interaction is energetically dominant at room temperature,
two scenarios can be considered. One is the case where the
electron kinetic energy is gained and the magnetic solution
becomes ferromagnetic, which may be the case for many local
magnetization directions different from those shown in Fig. 9,
but further analysis involving the electronic state is needed.

The other is the case where the local spins remain antipar-
allel. In this study, we approximated the distribution to be
uniform in real space and within a collinear spin configura-
tion. Even in this case, the frustration of the spin configuration
due to the antiferromagnetic interaction resulted in a large
reduction in TC. Similar to the case in which each element
was randomly distributed in real space and the antiferro-

magnetic interaction spins maintained structural frustration,
in the case of HEA, there was interelement frustration in
the magnetization between elements. Further, if we consider
that the magnetization can be in a noncollinear configuration,
there is a great possibility that we can obtain nonmagnetic
solutions such as spin glasses. If these phenomena exist, they
can be called the cocktail effect of HEA. There may be such
interesting phenomena in HEA from a fundamental physics
perspective.

VII. SUMMARY

Automatic exhaustive exploration was performed for large
material space consisting of 147,630 equiatomic quaternary
high entropy alloys. Our high-throughput calculation tool
succeeded in calculating approximately 99.1% of the mate-
rial space, where the numerical parameters and convergence
procedure were fully automatically controlled. Combining
AkaiKKR program package and supercomputer Fugaku, we
constructed the unique and useful material database, which
contains the total energy, magnetization, Curie temperature,
and residual resistivity, for screening new functional magnetic
materials. Frequent itemset mining was used to identify the
characteristics of parcels in magnetization and Curie tem-
perature space. This method clearly specified the elemental
dependence of the local spin moment and spin-parallel or
antiparallel configurations. The effective additive elements to
the magnetic properties were also analyzed. We showed that
a valid prediction model for the residual resistivity could be
realized. Furthermore, we clarified the important explanatory
variables and illustrated the elementary dependence based
on the periodic table. Finally, the automatic exhaustive cal-
culations and data science approaches demonstrated in this
work can be easily applied to other nonstoichiometric and
substitutionally disordered systems. In particular, they will be
quite useful for exploring high-performance and optimized
soft magnets, permanent magnets, spintronics materials, and
electric resistance materials.
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