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ABSTRACT

Measuring the similarity between materials is essential for estimating their properties and revealing the associated physical mechanisms.
However, current methods for measuring the similarity between materials rely on theoretically derived descriptors and parameters fitted
from experimental or computational data, which are often insufficient and biased. Furthermore, outliers and data generated by multiple
mechanisms are usually included in the dataset, making the data-driven approach challenging and mathematically complicated. To over-
come such issues, we apply the Dempster–Shafer theory to develop an evidential regression-based similarity measurement (eRSM) method,
which can rationally transform data into evidence. It then combines such evidence to conclude the similarities between materials, consider-
ing their physical properties. To evaluate the eRSM, we used two material datasets, including 3d transition metal–4f rare-earth binary and
quaternary high-entropy alloys with target properties, Curie temperature, and magnetization. Based on the information obtained on the sim-
ilarities between the materials, a clustering technique is applied to learn the cluster structures of the materials that facilitate the interpretation
of the mechanism. The unsupervised learning experiments demonstrate that the obtained similarities are applicable to detect anomalies and
appropriately identify groups of materials whose properties correlate differently with their compositions. Furthermore, significant improve-
ments in the accuracies of the predictions for the Curie temperature and magnetization of the quaternary alloys are obtained by introducing
the similarities, with the reduction in mean absolute errors of 36% and 18%, respectively. The results show that the eRSM can adequately
measure the similarities and dissimilarities between materials in these datasets with respect to mechanisms of the target properties.

© 2023 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(http://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0134999

I. INTRODUCTION

The concept of machine learning has great potential for applica-
tion in several areas of materials science, especially for discovering
new materials. In materials science, a number of the problems

addressed by data-driven approaches require the effective utilization
of existing material data for predicting the properties of new materi-
als and understanding the underlying physicochemical mechanisms.1

From an engineering point of view, developing a data-driven
model that quickly and accurately predicts the physical properties
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of possible materials from accumulated data can reduce the time
required for material development. By applying a data-driven
model to screen materials in silico, we narrow down the candidates
that require expensive calculations and experiments to verify. If
there are sufficient independent supervised data from the distribu-
tion of the target material data, a model with high prediction accu-
racy can be built using state-of-the-art data-driven techniques.
However, because materials research and development aim to
develop materials that are superior to existing ones, the distribution
of the target prediction data may be completely different from the
distribution of the original training data. Therefore, there are con-
cerns about whether data-driven models can accurately predict the
physical properties of new materials.

On the contrary, considering the history of materials science,
researchers have discovered various materials through a loop of
hypothesis and verification based on their knowledge, experience,
and serendipity. Particularly, hypothesizing relies heavily on
describing, interpreting, and understanding the underlying physico-
chemical mechanisms of the observed physical phenomena of
materials. Scientifically, applying a data-driven approach to extract-
ing knowledge from existing complicated material data can acceler-
ate the process of describing, interpreting, and understanding the
physicochemical mechanisms underlying the observed physical
phenomena of materials. This reduces the time required for mate-
rial development. Hence, to be effectively applied to materials
science, data-driven approaches that are interpretable and under-
standable to humans must be developed.

One of the most intuitive and interpretable data-driven
approaches for humans is analogy-based inductive reasoning,
which infers the properties of a new instance using the information
of the observed instances that are most similar to it.2–5 By applying
analogy-based models, we can easily explain the reasoning process
behind the predictions and reveal the physicochemical mechanisms
rationalizing the observations.6,7 Materials scientists have resolved
different problems in materials science by systematizing informa-
tion about analogies in composition or structure between materials
that exhibit similar physicochemical properties.8–11

Especially, in a discipline based on fundamental principles,
such as condensed matter physics, it is essential to elucidate the
physical mechanisms and which materials are manifested through
each of these physical mechanisms. However, despite several new
materials and superior properties having been discovered, it is still
difficult to appropriately quantify the similarities between materials
to elucidate the underlying physicochemical mechanisms of these
properties. Furthermore, this difficulty arises from the fact that the
mechanisms of materials’ properties are typically interpreted in
terms of physicochemical concepts based on relative criteria.

The phenomenon of superconductivity in materials, which
originates from the instability of metals, is a well-known example
of the above difficulty. One of the most successful theories that
describe the microscopic mechanisms is the Bardeen–Cooper–
Schrieffer (BCS) theory for superconductivity,12 the origin of which
is electron–phonon interactions. However, there also exist other
mechanisms. For example, one of the most plausive origins of
superconductivity in the high-TC cuprates is electron–electron
interactions. Nevertheless, it is not easy to achieve a consensus of
classifying the superconducting mechanism of materials among

researchers as the origins. Although the emergence of superconduc-
tivity is basically due to the instability in the metallic phase, it is
not easy to achieve the consensus because both the mentioned and
other mechanisms can contribute cooperatively in increasing the
TC value, for example. Although it is challenging to classify individ-
ual materials when considering phenomena that cause such a situa-
tion, it is expected that the underlying physical mechanisms can be
discovered if we can inductively quantify the similarities between
the materials of interest and group similar materials using all obser-
vation data.

Incidentally, inductive reasoning with inefficient similarity
assessment can lead to misidentification of outliers13 and difficulty
in explaining the underlying physicochemical mechanisms of data-
sets using single models. Therefore, regarding predefined material
descriptors, an exhaustive examination of all possible hypotheses
about the unknown physicochemical mechanisms is necessary to
assess the similarity between the materials. Furthermore, similarity
measures are usually context-dependent. Because the context
changes, the similarity measure must be modified to adequately
capture the phenomena under study.14,15 Thus, a quantitative
measure of similarity needs to consider the uncertainty arising
from the context or the measurement itself, especially in situations
where material data are often insufficient and heavily biased.
Moreover, similarities from different contexts may not be directly
comparable in the integration to draw conclusions about the simi-
larity between materials. These reasons make it challenging to
apply data-driven approaches to materials science.

To overcome such issues and efficiently extract knowledge
from the data, we propose a new approach that shifts from measur-
ing the similarity between materials to quantitatively measure the
confidence in their similarities. We adopt the Dempster–Shafer
theory,16–18 referred to as the evidence theory, to develop an evi-
dential regression-based similarity measurement (eRSM) for detect-
ing subgroups of materials such that leaned models from the
subgroups show high correlations between descriptors and the
target property of the constituent materials. Further analysis of
models describing the subgroups provides valuable information to
extract, interpret, and understand physical mechanisms. The
Dempster–Shafer theory can be regarded as a generalization of the
Bayesian approach for solving the problem of incomplete and
insufficient information. Moreover, it is suitable for solving mate-
rial data problems.19,20 The measure of similarity here refers to
whether the observed physical properties of the materials under
study are described using the same hidden mechanism that has
not yet been revealed. In other words, we consider any pair of
materials (in the dataset) as similar if their physical properties
can be described by the same hidden mechanism; otherwise, the
pair of materials is considered dissimilar. We then first generate
numerous hypothetical mechanisms by randomly choosing
subsets of data instances and constructing regression models for
each subset. Each regression model is considered a source of evi-
dence of the similarities between materials. Thereafter, the
Dempster–Shafer theory,16–18 which has a foundation for model-
ing and combining the uncertainty of evidence, is applied to inte-
grate the collected pieces of evidence to draw conclusions about
the similarities between materials. The eRSM consists of three
main steps as follows:
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1. Collect sources of evidence: Hypothetical mechanisms are col-
lected from a dataset by applying regression analysis with single
or mixture models and are used as sources of evidence to ratio-
nalize the similarity states of materials.

2. Model similarity evidence: An appropriate mass function is
designed to model the obtained evidence within the framework
of the evidence theory.

3. Combine pieces of evidence: Dempster’s rule of combination is
used to integrate the pieces of the evidence.

The steps of the eRSM are explained in detail in Sec. II.
Regarding the framework of the evidence theory, the essential
contributions of the eRSM are collecting sources of evidence
about the similarities between materials from datasets and
designing suitable mass functions to model the pieces of evi-
dence rationally. The effectiveness of obtained similarities using
the eRSM for subdividing alloys from datasets into homogenous
subgroups is supported by experiments on (1) a dataset of
binary alloys with their Curie temperature as a target property
(Sec. III B) and (2) two datasets of quaternary alloys with their
magnetization (Sec. III C) and Curie temperature (Sec. III D) as
the target properties. Further analysis of the detected subgroups
to interpret the underlying physical mechanisms is shown in
Sec. III E.

II. METHODOLOGY

We consider a dataset D consisting of p data instances. We
assume that a data instance with index i in D is described by
n predefined descriptors and is represented by an n-dimensional
numerical vector, xi ¼ x1i , x

2
i , . . . , x

n
i

� �
[ Rn. The target

property of the data instance xi is yi [ R. Thereafter, the dataset
D ¼ (x1, y1), (x2, y2) . . . (xp, yp)

� �
is represented using a

p� nþ 1ð Þð Þ matrix. In this study, we consider that D may
contain pairs of data instances xi and xj, where xi � xj; however,
the value of yi is far from yj.

A. Collecting sources of similarity evidence

We perform random subset sampling of the data instances
without replacement to collect a large amount of evidence of the
similarity between pairs of data instances in D. Considering each
sample, we obtain two datasets: the reference dataset, Dref , and the
evaluation dataset, Deval (Dref >Deval ¼ ; and Dref <Deval ¼ D).
Considering Dref , we can generate a single function or multiple ref-
erence functions fr :R

n ! R using a Gaussian process (GP)21 or a
mixture of Gaussian processes (MGP),22 respectively. This study
applies GP- or MGP-based models instead of other nonlinear
regression models, such as kernel ridge regression,23 random forest
regression,24 or artificial neural networks25 because GP or MGP
can quantify the uncertainty of its prediction without introducing
any other statistical validation. The sampling ratios of Dref from D
are fixed at 0.3 and 0.7 for the experiments with GP and MGP,
respectively. Each reference function fr is considered a source to
provide pieces of evidence for the similarity between (xi, yi) and
(xj, yj) in Deval . The function fr is not used to provide any informa-
tion about the similarities between the data instances in Dref or
between a data instance in Dref and a data instance in Deval . This is
to exclude self-evaluation to ensure the objectivity of the evidence.
Regarding a reference function fr , we consider the state of the simi-
larity between (xi, yi) and (xj, yj) as

• Similar: Both data instances can be considered to have been gen-
erated by the function fr [Fig. 1(a)].

• Dissimilar: Only one of the data instances can be considered to
have been generated by the function fr [Fig. 1(b)].

• Uncertain: Neither of the data instances can be considered to
have been generated by the function fr [Fig. 1(c)]. The uncertain
state indicates that fr does not provide any information about the
similarity between (xi, yi) and (xj, yj).

To quantitatively evaluate whether (xi, yi) can be considered
to have been generated by the regression function fr , we use the

FIG. 1. Illustrative figures of the three possible similarity states between two data instances (blue circles), including similar (a), dissimilar (b), and uncertain (c), considering
a referential regression model fr (black line). The gray region is the interval that determines whether a data instance can be considered to have been generated by regres-
sion model fr .
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likelihood p(Oijfr), the probability of event Oi that a data instance
(xi, yi) is observed, considering fr . The likelihood p(Oijfr) is
modeled using a normal distribution with mean and standard devi-
ation depending on the predicted target value ŷi ¼ fr(xi) and the
corresponding standard error σxi by fr, respectively. This is
expressed as

p(Oijfr) ¼ 1 if Δi � 3 �σ,
2� Ðþ1

Δi�3 �σ N uj0, α σxið Þdu otherwise,

�
(1)

where Δi ¼ jyi � ŷij ¼ jyi � fr(xi)j is the deviation from the true to
the predicted target values of data instance i using fr , and �σ is the
average of the predictive standard error of all the data instances in
Dref . α is the hyperparameter used to adjust the condition that
restricts the data instances belonging to the function fr . In other
words, the interval that determines the probability that a data
instance (xi, yi) belongs to fr is α σxi , and if the data instance falls
outside this interval, it is determined that it does not belong to fr .
By increasing or decreasing the value of the parameter α, the con-
dition for determining whether a data instance (xi, yi) belongs to fr
is relaxed or tightened, making p(Oijfr) larger or smaller, respec-
tively. Optimal values of α can be chosen using statistical criteria
and appropriate validation methods; however, we set α ¼ 2 for all
experiments in this work to reduce model complexity. We consider
p(Oijfr) as the probability that (xi, yi) is generated by fr, and
p(Oijfr) ¼ 1� p(Oijfr) is the probability that (xi, yi) is not gener-
ated by fr. Figure 1 in the supplementary material illustrates the
process of modeling the probability p(Oijfr).

Events where (xi, yi) or (xj, yj) is generated by the function fr
are independent events. Therefore, considering the function fr , we
can evaluate the joint probabilities of observing

• both data instances:

p(Oi, Ojjfr) ¼ p(Oijfr)� p(Ojjfr); (2)

• only one of the data instances:

p(Oi, Ojjfr)þ p(Oi, Ojjfr)
¼ p(Oijfr)� p(Ojjfr)þ p(Oijfr)� p(Ojjfr); (3)

• neither of the data instances:

p(Oi, Ojjfr) ¼ p(Oijfr)� p(Ojjfr)
¼ 1� p(Oi, Ojjfr)� p(Oi, Ojjfr)� p(Oi, Ojjfr): (4)

B. Modeling evidence by mass functions

Considering the Dempster–Shafer theory framework,16 we
begin by defining the frame of discernment Ω. Let Ω ¼ {s, ds} be
the universal set representing the similarity states of any two data
instances (xi, yi) and (xj, yj). s and ds denote the similarity and dis-
similarity states between the two data instances, respectively.

According to the Dempster–Shafer theory, the evidence of the
similarity states between these two data instances is represented by
a mass function mi,j (or a basic probability assignment).16 This

assigns probability masses to all the nonempty subsets of Ω
(X ¼ {{s}, {ds}, {s, ds}}). It is defined as follows:

mi,j :X ! 0, 1½ � with
X
E[X

m(E) ¼ 1: (5)

The masses assigned to {s} and {ds} reflect the degrees of belief
exactly committed to the evidence to support the similarity and
dissimilarity between (xi, yi) and (xj, yj), respectively. The weight
assigned to {s, ds} expresses the degree of belief that the evidence
provides no information about the similarity (or dissimilarity)
between (xi, yi) and (xj, yj).

Therefore, the mass function mi,j
fr
, which models a piece of evi-

dence of the similarity between (xi, yi) and (xj, yj) collected from
fr , is defined as follows:

mi,j
fr
({s}) ¼ p(Oi, Ojjfr)

γ i,j
, (6)

mi,j
fr
({ds}) ¼ p(Oi, Ojjfr)þ p(Oi, Ojjfr)

γ i,j
, (7)

mi,j
fr
({s, ds}) ¼ 1� 1

γ i,j
þ p(Oi, Ojjfr)

γ i,j
, (8)

where γ i,j ¼ e
�σ
Δy þ 1

� �
� σxi

�σ þ 1
� �� σxj

�σ þ 1
� �

is a discounting

factor,16,26 which describes the unreliability of evidence about the
similarity between (xi, yi) and (xj, yj) collected from a source of
evidence fr . Δy is the variation range of the target variable y in the
dataset D. The smaller the �σ relative to Δy , the more reliable the
learned regression function fr . Also, when σxi and σxj are smaller
than �σ, fr can provide reliable evidence for the relationship between
(xi, yi) and (xj, yj). By contrast, when σxi and σxj are large com-
pared to �σ, fr cannot provide reliable evidence for the relationship
between (xi, yi) and (xj, yj). A detailed explanation of each compo-
nent in γ i,j is provided in Sec. I of the supplementary material.

C. Dempster’s rule in combining evidence

Assuming that we can collect q pieces of evidence from
F r ¼ {f 1r , . . . , f

q
r }, a set of q reference functions is generated from

D to evaluate the similarity between a pair of data instances with
indices i and j. According to the Dempster–Shafer theory frame-
work, any two pieces of evidence collected from the reference func-
tions f lr and f kr , which are modeled by the corresponding mass

functions mi,j
f lr

and mi,j
f kr
, respectively, can be combined using the

Dempster rule of combination to assign the joint mass mi,j
{f lr ,f

k
r }

to
each nonempty subset E of Ω as follows:

mi,j
{f lr ,f

k
r }
(E) ¼ mi,j

f lr
�mi,j

f kr

� �
(E)

¼
P

Et>Ev¼E m
i,j
f lr
(Et)�mi,j

f kr
(Ev)

1�P
Et>Ev¼; m

i,j
f lr
(Et)�mi,j

f kr
(Ev)

, (9)
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where E, Et , and Ev are nonempty subsets of Ω. Dempster’s rule is
commutative and associative.

Based on Dempster’s rule, the obtained mass functions corre-
sponding to the q pieces of evidence are combined to assign the
final mass mi,j

F r
as follows:

mi,j
F r
(E) ¼ mi,j

f 1r
�mi,j

f 2r
� . . .�mi,j

f qr

� �
(E): (10)

We perform similar analyses for all pairs of data instances in
D to construct symmetric matrices M comprising the similarities
(M[i, j] ¼ M[j, i] ¼ mi,j

F r
({s})) between them. Thereafter, the

obtained matrix is applied for further unsupervised data mining
analysis, such as clustering or data visualization.

III. EXPERIMENTS AND RESULTS

In this section, we perform three experiments to demonstrate the
application of our similarity measurement in dealing with outliers and
data generated by multiple mechanisms when designing material
descriptors. We apply the eRSM to measure similarities between mag-
netic of three datasets for detecting subgroups of materials: (1) the
experimentally observed Curie temperature dataset (Dbinary) of binary
alloys for transitioning rare-earth metals, (2) the dataset of calculated
magnetization of quaternary high-entropy alloys (DMag

quaternary), and (3)
the dataset of calculated Curie temperature of quaternary high-entropy
alloys (DTC

quaternary). Note that the datasets DMag
quaternary and DTC

quaternary
contain similar alloys and differ only in the target properties.

A. Datasets

The details of the datasets investigated in this study are as
follows.

• Binary alloys dataset Dbinary :
27 A material dataset containing 100

transition rare-earth metal binary alloys, comprising nickel (Ni),

manganese (Mn), cobalt (Co), or iron (Fe), and the correspond-
ing Curie temperatures (TC). This dataset was collected from the
Atomwork database of the National Institute for Materials
Science.28,29 Each binary alloy in Dbinary is represented using
seven descriptors: (1) and (2) the atomic number of transition
metal (ZT) and rare-earth (ZR) constituents, (3) projection of the
spin magnetic moment onto the total angular moment of the 4f
elections (J4f 1� g j

� �
), (4) and (5) covalent radius (rcovT) and

first ionization (IPT ) of the transition metal, and (6) and (7) con-
centration of the transition metal (CT ) and rare-earth metal (CR).
The selection of these seven descriptors has been discussed in
detail in previous studies.10,30

• Quaternary high-entropy alloys datasets Dquaternary:
27 A material

dataset contains 990 equiatomic quaternary high-entropy alloys,
which comprise 14 transition metals Ag, Cd, Co, Cr, Cu, Fe, Mn,
Mo, Ni, Pd, Rh, Ru, Tc, Zn, and the corresponding calculated mag-
netizations and Curie temperatures in the BCC phase. The dataset
was collected from an original dataset of 147 630 equiatomic quater-
nary high-entropy alloys calculated using the Korringa–Kohn–
Rostoker coherent approximation method.31 Each alloy in Dquaternary

is represented using 135 compositional descriptors, including the
means, standard deviations, and covariance of the atomic represen-
tations of their constituent elements13 and four categorical features
indicating the elements comprising the quaternary alloy. The
feature selection process applied to this dataset has been discussed
in detail in Sec. III of the supplementary material.

B. Assessment of the similarity between transition
rare-earth metal binary alloys based on mechanisms
of Curie temperature

In the first experiment, we show the versatility of the eRSM
for detecting outliers and identifying a mixture of mechanisms. We

FIG. 2. (a) Observed and predicted Curie temperature of alloys in the dataset Dbinary using model generated for nickel (Ni), iron (Fe), and manganese (Mn)-based alloys.
The blue and gray points indicate cobalt (Co)-based alloys and alloys of other transition metals (Ni, Fe, Mn), respectively. (b) Prediction error of Co-based alloys when
excluding (top) or including (bottom) data of other Co-based alloys to the training dataset.
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apply the eRSM to assess the similarities between 100 transition
rare earth metal binary alloys comprising nickel (Ni), manganese
(Mn), cobalt (Co), or iron (Fe) in the dataset Dbinary based on their
Curie temperatures. We can construct a regression model using a
Gaussian process by considering the data instances in Dbinary . This
shows a high prediction accuracy with an R2 score of 0:963 and a
mean absolute error (MAE) of 40 (K) in tenfold cross-validation.
However, such a nonparametric regression model does not guaran-
tee the reliability of the model in the subsequent exploratory pre-
dictions. This is because the number of observable alloys is
relatively small compared to the number of possible alloys.

Figure 2(a) shows the results of the exploratory prediction of
the Curie temperature of the Co-based binary alloys in Dbinary

using a Gaussian process regression model constructed from the
data of binary alloys of Ni, Mn, and Fe. The regression model con-
structed from the data of binary alloys of Ni, Mn, and Fe shows a
high prediction accuracy in tenfold cross-validation [R2 ¼ 0:946
and MAE ¼ 35 (K)]. Although the Co-based alloys with high
Curie temperature tend to be underestimated by the model, the
other Co-based alloys are often overestimated. The prediction error
for the Co-based alloys is critically reduced when some data of the
other Co-based alloys are included [Fig. 2(b)]. This observation
supports the hypothesis that the underlying mechanisms are differ-
ent between the Co-based alloys and alloys of other transition
metals. This facilitates the use of the eRSM to clarify the mixture
mechanism from this dataset.

By applying the eRSM on the dataset Dbinary , we obtain a simi-
larity matrix Mbinary with moderately high similarity values among
the data instances [Fig. 3(a)]. Thus, approximately, all the data
instances can be regressed by a relatively smooth function. This is

consistent with the high prediction accuracy of tenfold cross-
validation for all the alloys in the dataset. Considering the explor-
atory data analysis, to avoid false intuition or misunderstanding,
the grouping of alloys in Dbinary is done such that the similarities

FIG. 3. (a) Heatmap illustrating the similarity matrix Mbinary extracted for all the data instances in the Dbinary . (b) Confusion matrices measuring the regression-based simi-
larities between alloys in four groups G1–G4 and the dissimilarities between the models generated for alloys in different groups.

FIG. 4. Dependence of TC on the concentration of the transition metal (CT ) in
alloys. Red, blue, green, and yellow scatters indicate alloys containing cobalt (Co),
iron (Fe), manganese (Mn), and nickel (Ni). Alloys in G1 are highlighted by triangles.
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between the alloys in each group are high. Moreover, one alloy can
belong to more than one group simultaneously, or it can be in
none of the groups. We apply a graph-based clustering method32 to
the extracted similarity matrix to detect overlapping subgroups of
materials. As a result, we observe four groups of alloys, denoted as
G1, G2, G3, and G4, which show high intragroup similarities,
exceeding 0:7 [Fig. 3(a)]. Nevertheless, the similarity between the
alloys in group G1 and those in G2, G3, and G4 is significantly dis-
similar. In addition, a small group of alloys [Fig. 3(a), gray region]
is approximately different from all the others and can be consid-
ered outliers. The remaining alloys are not assigned to any group
to have confidence in the clustering analysis results.

To evaluate the validity of the analysis process quantitatively,
we trained the regression models for TC using data from each of

the four groups G1, G2, G3, and G4. Moreover, we monitored their
prediction accuracy on these groups. The confusion matrix summa-
rizing the correlation between the observed and predicted TC by
the four learned regression models is shown in Fig. 4. The diagonal
plots illustrate the cross-validation results of the models learned
from the four groups of alloys. The off-diagonal plot shows the cor-
relation between the observed TC and the predictions made by the
model learned from the alloys of the other groups. The obtained
results confirm the intragroup similarity of the alloys in groups G1,
G2, G3, and G4, respectively, dissimilarity between the five groups,
and intra-group dissimilarity of the alloys considered outliers. This
indicates that the obtained results suggest that the physical mecha-
nisms of alloys in G1 may be different from those of the alloys in
G2, G3, and G4. Nonetheless, it is difficult to determine the

FIG. 5. (a) and (d) Heatmaps illustrating the similarity matrices MMag
quaternary (a) and M

TC
quaternary (d) extracted from datasets DMag

quaternary and DTC
quaternary , focusing on mechanisms

of magnetization and TC , respectively. (b) and (e) The confusion matrix summarizes the differences between the magnetization (b) or TC (e) mechanisms of alloys in
extracted groups. (c) and (f ) Visualization of quaternary alloys in the two-dimensional embedding spaces constructed by applying the t-distributed stochastic neighbor

embedding (t-SNE) to MMag
quaternary (c) and M

TC
quaternary (f ). Red, blue, and gray contours indicate gaussian models Ĝ

Mag
1 ĜTC

1

� �
, ĜMag

2 ĜTC
2

� �
, and ĜMag

3 ĜTC
3

� �
, respectively,

learned by using the Gaussian mixture models33 in the embedding space focusing on mechanisms of magnetization TCð Þ. In addition, red and blue points in sub-figures

(b) and (c) [(e) and (f )] indicate the alloys in GMag
1 GTC

1

� �
) and GMag

2 GTC
2

� �
, respectively.
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differences between the mechanisms of the TC of alloys in G2, G3,
and G4.

Moreover, considering the alloys in G1, there is a strong linear
correlation between TC and the concentration of transition metals
in the alloys with a Pearson correlation coefficient of 0:95 (Fig. 4,
triangle scatters). This result is consistent with the observation of
the previous research30 when considering all binary alloys of transi-
tion metals and rare-earth metals in Dbinary ; the range of TC is
found to be correlated with the composition ratio of the transition
metals. Furthermore, 13 of the 17 alloys in G1 are Co-based alloys
with high Curie temperatures (TC . 600 K). By contrast, most of

the other Co-based alloys in Dbinary have lower Curie temperatures
(TC , 500 K) and are assigned to G2, G3, and G4. These results are
consistent with the observation that the regression model for Fe-,
Mn-, and Ni-based alloys tends to underestimate the TC of the
Co-based alloys with high TC and overestimates the TC of the
remaining Co-based alloys [Fig. 2(a)].

In addition, we examine the behavior of eRSM on toy datasets
synthesized with outliers or multiple mechanisms to assess the effi-
ciency of this similarity measure. Detailed results of these experi-
ments are summarized in Sec. II of the supplementary material.
Briefly, the eRSM demonstrates that it can effectively assess the

FIG. 6. Prediction accuracies for magnetization (a) and (b) and Curie temperature (c) and (d) of the alloys with tenfold cross-validations. Prediction validation results with
single gaussian process regression models for magnetization and Curie temperature are shown in sub-figures (a) and (c), respectively. Prediction validation results with
mixtures of expert models for magnetization and Curie temperature are shown in sub-figures (b) and (d), respectively. Blue and white circles indicate magnetic alloys (finite
magnetization) and non-magnetic alloys (zero magnetization), respectively.
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similarity between the data instances and use the similarity for
detecting outliers and a mixture of mechanisms.

C. Assessment of the similarity between quaternary
high-entropy alloys based on mechanisms of
magnetization

The effectiveness of the eRSM in detecting outliers and identi-
fying mixture mechanisms in the material dataset has been shown
in the previous experiment. In the next two experiments, we show
the potential of applying the measured similarity to design descrip-
tors for materials.

Considering this experiment, we subsequently apply the eRSM
to assess the similarities between 990 quaternary high-entropy
alloys comprising 14 transition metals in the dataset DMag

quaternary
based on their magnetization. To predict the magnetization of
these alloys, we attempted to construct an optimal Gaussian
process regression model using the designed descriptors. The
Gaussian process can poorly regress the magnetization with an R2

score of 0:75 and an MAE of 0:13 (T) in the tenfold cross-
validation. The obtained results suggest that the magnetization of
these alloys may not be described by a single model in the designed
descriptor space. This indicates that the existence of outliers or
mixture models of the magnetization properties of these alloys in
the descriptor space should be considered in the analysis of this
dataset.

Applying the eRSM, we obtain a similarity matrix MMag
quaternary

with two core groups of alloys denoted by GMag
1 and GMag

2 , showing
high intra-group similarities and exceeding 0:5 [Fig. 5(a)]. Some of

the alloys in GMag
1 are similar to those in GMag

2 ; nonetheless, the rest
show apparent dissimilarities. Furthermore, one small group of
alloys [Fig. 5(a), yellow region] showed dissimilarities with the
others and could be considered outliers. The remaining alloys in

DMag
quaternary do not exhibit apparent similarities with alloys in groups

GMag
1 and GMag

2 . Therefore, they are not assigned to any group.
To validate the obtained results quantitatively, we trained

three regression models using data from each group, GMag
1 , GMag

2 ,
and outliers. We monitored the prediction accuracy of the three
learned regression models for data in all the groups. The confu-
sion matrix summarizing the correlations between the observed
and predicted values of the target variable using the learned
regression models is shown in Fig. 5(c). The diagonal plots illus-
trate the tenfold cross-validation results of the models learned
from these three groups of alloys. The off-diagonal plot shows
the correlation between the observed magnetization and the pre-
dictions made by the model learned from the alloys of the other
groups.

The obtained results confirm the intragroup similarity of the

alloys in groups GMag
1 and GMag

2 , respectively, the dissimilarity
between the two groups, and the intra-group dissimilarity of the
alloys considered as outliers. Specifically, we observe that group

GMag
2 consists of ferrimagnetic alloys or alloys whose magnetization

is relatively smaller [magnetization , 0:1 (T)] than the others in

the group GMag
1 . In contrast, using the data in GMag

1 , we can con-
struct a Gaussian process regression model with a high prediction

accuracy with an R2 score of 0:992 and an MAE of 0:016 (T) in the
tenfold cross-validation.

Therefore, we can use the information of the constituent ele-
ments of each alloy to predict which group it belongs to in
advance20 and apply an appropriate regression model to improve
prediction accuracy for the alloys. We combine the similarity mea-
sured by using the eRSM with the Jaccard similarity coefficient34

and apply the t-distributed stochastic neighbor embedding35

(t-SNE) to construct a two-dimensional embedding map
[Fig. 5(c)]. Details of the combination method are shown in Sec. IV
of the supplementary material. As a result, we can easily distinguish
the alloys in groups GMag

1 (red) and GMag
2 (blue) when they form

two separate regions with high density in the embedding space. We
apply a Gaussian mixture model33 (GMM) on the embedding
space to identify groups and calculate the probability of an alloy
belonging to a particular identified group. Alloys in different
groups are treated differently by using a mixture of experts36

(MoE) approach. Figures 6(a) and 6(b) show a reduction of the
proposed mixture of experts in MAE of 18% compared with the
result of the single model, from 0:13 (T) to 0:11 (T). Further analy-
sis shows that applying the obtained similarities in MOE improves
the prediction accuracy for magnetic alloys [Fig. 7(a) in the
supplementary material].

D. Assessment of the similarity between the
quaternary high-entropy alloys based on mechanisms
of Curie temperature

Considering this experiment, the target data are the same as
in Sec. III C (Dquaternary); however, the physical property of interest
is TC . A regression model can be constructed using a Gaussian
process. This shows a rather high prediction accuracy in tenfold
cross-validation with an R2 score of 0:85 and an MAE of 67 (K).
We also observe two distinguishable groups of quaternary alloys in

the dataset DTC
quaternary when applying the eRSM. Figure 5(d)

FIG. 7. Proportions of quaternary alloys containing Fe or Co in group GMag
1 (a)

and GTC
1 (b).
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illustrates the similarity matrix MTC
quaternary with two groups of alloys

denoted as GTC
1 and GTC

2 , showing high intra-group similarities and
exceeding 0:5. Some of the alloys in GTC

1 are similar to those in
GTC
2 . Nonetheless, the others exhibit apparent dissimilarities, which

is consistent with the observation of two high-density regions (red)
in the embedding map of MTC

quaternary [Fig. 5(e)]. Furthermore, a
small group of alloys [Fig. 5(d), yellow region] showed dissimilari-
ties with all the others and could be considered outliers. The
remaining alloys do not show apparent similarities with alloys in
groups GTC

1 and GTC
2 ; thus, they are not assigned to any group.

Following the same analysis procedure as in Sec. III C, we
trained regression models for Curie temperature using data from

each of the three groups GTC
1 , GTC

2 , and outliers and monitored
their prediction accuracy on these groups. Figure 5(f ) shows
the confusion matrix that summarizes the obtained results.
The diagonal plots illustrate the tenfold cross-validation results
of the models learned from these three groups of alloys. The
off-diagonal plot shows the correlation between the observed
Curie temperature and the predictions made by the regression
model learned from the alloys of the other groups. We can also
confirm the intra-group similarity of the alloys in groups
GTC
1 and GTC

2 , respectively, dissimilarity between the two groups,
and intra-group dissimilarity of the alloys considered outliers.

Specifically, we observe that the Curie temperatures of approx-
imately all the alloys in group GTC

2 have a low TC, which is 0 (K) or

FIG. 8. Effect of coexistence of the 14 transition metals on magnetization and Curie temperature mechanisms. Each pie chart results from quaternary alloys containing the
respective element pair. They show the percentages of alloys that follow the magnetization mechanisms (lower-left triangle) and Curie temperature mechanisms (upper-right
triangle), as extracted by the eRSM. Red and blue areas indicate the percentages of alloys whose magnetization and TC are finite GMag

1

�
and GTC

1 Þ and zero GMag
2

�
and

GTC
2 Þ, respectively. Yellow areas indicate the percentages of alloys that are detected as outliers. By contrast, gray regions indicate the fractions of alloys not assigned to the

extracted groups.
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relatively smaller than that of the other alloys. Furthermore, using
the data in GTC

1 , we can construct a Gaussian process regression
model with a high prediction accuracy with an R2 score of 0:985
and an MAE of 19 (K) in the tenfold cross-validation.

Therefore, we utilize the similarity information to design
descriptors for quaternary alloys due to the effectiveness of the data
for detecting the mixture of multiple mechanisms in the dataset.
We apply similar methods as in the previous experiment to con-
struct a two-dimensional embedding map [Fig. 5(f )] and then
learn a mixture of experts to predict Curie temperature of quater-
nary alloys in the dataset DTC

quaternary . The proposed mixture of
models exhibits higher prediction accuracy than the single model
in tenfold cross-validations [Figs. 6(c) and 6(d)]. The MAE of the
proposed mixture of expert reduces approximately 36%, from
67 (K) to 49 (K).

E. Discussion of the obtained similarities between
materials and the associated physical mechanisms

Regarding the experiments with the datasets DMag
quaternary and

DTC
quaternary focusing on magnetization or TC , the datasets seem to be

a self-evident example where magnetization and TC are cases sensi-
tive to finite or zero. As we can see from the results described
above (Secs. III C and III D and Sec. VI in the supplementary
material), the prediction accuracy is low when considering a single
regression model for the entire dataset. In this section, we pay

attention to the analysis of the extracted alloys groups GMag
1 , GMag

2 ,
GTC
1 , and GTC

2 to identify underlying patterns.
Figure 7 shows that Fe and Co, which have a large spin

moment, ferromagnetic interactions with many elements and result
in high magnetization or TC , are dominant elements comprising

alloys in two groups GMag
1 (a) and GTC

1 (b). Furthermore, in the
analysis that considers the proportion of the quaternary alloys
fixing two of their four constituent elements concerning the

extracted four groups GMag
1 , GMag

2 , GTC
1 , and GTC

2 , we observe that
the proportion of Fe-containing and Co-containing alloys in two

groups GMag
1 (a) and GTC

1 is significantly larger than other groups
(Fig. 8). Thus, the prediction models constructed from the data of

the alloys in GMag
1 or GTC

1 are more suitable to predict magnetiza-
tion or TC , respectively, of alloys containing these elements. The
remaining Fe–X and Co–X (X denotes the other transition metals
comprised in the alloys) alloys are considered outliers of the
extracted mechanisms or unassigned HEAs, which are not assigned
to any of these mechanisms. Conversely, Mn–X alloys exhibit
similar behavior as Fe–X and Co–X when focusing on the magneti-
zation mechanisms. However, for the Curie temperature, the Mn–X
alloys are categorized in the group GTC

2 of low TC besides the other
groups. Especially among the Fe–X and Co–X alloys, the percentage
of Fe–Mn and Co–Mn alloys considered outliers of the mecha-
nisms extracted from GTC

1 is relatively higher, 55% and 43%, respec-
tively (Fig. 8).

For further investigation, we organized the raw data of the
quaternary alloys by focusing on the presence or absence of Mn.
Figure 9 shows the correlation between magnetization and Curie
temperature of 556 (56%) alloys with non-zero properties. The
total number of data instances is 990, and the number of data

instances where both TC and magnetization are zero is 413 (42%),
while there are 21 (2%) alloys with zero TC but have finite magneti-
zation. We found that the alloys containing all three elements, Mn,
Fe, and Co, show high Curie temperatures [TC . 900 K].
Conversely, the alloys containing either pairs of Mn–Fe or Mn–Co
show moderate Curie temperatures. By contrast, the Mn-containing
alloys without Fe or Co have low Curie temperatures [TC , 250 K].
Furthermore, the trends of these three alloy groups do not offer
any significant correlation between magnetization and Curie tem-
perature. However, an apparent positive correlation between mag-
netization and Curie temperature can be observed for the group of
Mn-free alloys.

To interpret the results obtained, we considered a hypothesis
of the origin of the observed data. The estimated magnetization is
the sum of all the local magnetic moments divided by the unit
volume. The local magnetic moments are determined by the spin
configurations of atomic sites that stabilize the structure of alloys.
Conversely, given a particular structure and spin configuration, the
TC can be estimated from the spin–spin exchange energy.
First-principles calculations show that early transition metals and
late transition metals often have antiferromagnetic interactions.37

This interaction has also been confirmed in high-entropy alloys by
using automatic exhaustive calculations.31 Mn lies between early
and late transition metals; thus, the estimation of the spin configu-
ration (ferromagnetic or antiferromagnetic) in Mn-containing
alloys should be cautiously considered in different situations, espe-
cially in high-entropy alloys whose elements can stochastically exist

FIG. 9. Correlation between magnetization (T ) and Curie temperature (K) of
quaternary alloys with non-zero magnetization and non-zero Curie temperature
in datasets DMag

quaternary and DTC
quaternary . Marginal plots show a histogram of the

properties of the alloys.
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at the same atomic site. From this consideration, we can admit a
hypothesis that the alloys containing Mn follow a different rule for
magnetization than those grouped into GMag

2 . Conversely, the alloys
containing Mn may follow the same rules for TC as the alloys
grouped into GTC

2 , albeit with a spin configuration that provides
magnetization. The details are beyond the scope of this paper and
will not be discussed here, but further analysis is promising.

IV. CONCLUSIONS

In this study, we developed a method that can be used to
rationally transform material data from multiple sources into evi-
dence of similarities between materials and combine the evidence
to conclude the similarities between materials. The extracted simi-
larity–dissimilarity information has significant potential for appli-
cations in the subgroup discovery of materials. The effectiveness of
the eRSM in detecting homogenous subgroups of materials has
been demonstrated by using two experiments on two datasets of
magnetic materials. In addition, further analysis of the detected
subgroups improves the existing knowledge of problems related to
the applied datasets of magnetic materials. For example, we reveal
the differences in the mechanisms of the Curie temperature of
Co-based binary alloys when using our method to a dataset of 100
transition rare-earth metal binary alloys comprising Ni, Mn, Co,
and Fe. Moreover, we explored the mechanisms of ferrimagnetic
and low Curie temperature alloys from the magnetic dataset of cal-
culated quaternary alloys. By measuring the similarity between
materials with uncertainty, the method described herein is expected
to extract valuable information for describing and interpreting the
underlying physical mechanisms in material datasets.

SUPPLEMENTARY MATERIAL

See the supplementary material for the following additional
information: (1) explanation of the formulation modeling uncer-
tainty, (2) evaluation of the eRSM using the toy datasets, and (3)
feature selection and pre-analysis in the dataset of quaternary high-
entropy alloys.

ACKNOWLEDGMENTS

This work was supported by the Ministry of Education,
Culture, Sports, Science, and Technology of Japan (MEXT) with
the Program for Promoting Research on the Supercomputer
Fugaku (DPMSD), JSPS KAKENHI grants 20K05301, JP19H05815
(Grants-in-Aid for Scientific Research on Innovative Areas
Interface Ionics), 21K14396 (Grant-in-Aid for Early- Career
Scientists), and 20K05068, Japan.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Minh-Quyet Ha: Conceptualization (equal); Data curation (equal);
Formal analysis (equal); Investigation (equal); Methodology (equal);
Validation (equal); Visualization (equal); Writing – original draft

(equal); Writing – review & editing (equal). Duong-Nguyen
Nguyen: Conceptualization (equal); Formal analysis (supporting);
Investigation (supporting); Methodology (supporting); Writing –
original draft (supporting). Viet Cuong Nguyen: Funding acquisi-
tion (credit); Resources (credit); Software (credit). Hiori Kino: Data
curation (lead); Formal analysis (supporting); Investigation (sup-
porting); Methodology (equal); Validation (equal); Writing – origi-
nal draft (equal); Writing – review & editing (equal). Yasunobu
Ando: Formal analysis (supporting); Methodology (supporting);
Writing – review & editing (supporting). Takashi Miyake: Formal
analysis (supporting); Methodology (supporting); Validation (sup-
porting); Writing – original draft (supporting); Writing – review &
editing (supporting). Thierry Denoeux: Formal analysis (credit);
Methodology (credit); Writing – review & editing (credit).
Van-Nam Huynh: Conceptualization (supporting); Formal analysis
(supporting); Investigation (supporting); Methodology (supporting);
Writing – review & editing (supporting). Hieu-Chi Dam:
Conceptualization (equal); Data curation (equal); Formal analysis
(equal); Funding acquisition (equal); Investigation (equal);
Methodology (equal); Project administration (equal); Resources
(equal); Supervision (equal); Validation (equal); Visualization
(equal); Writing – original draft (equal); Writing – review & editing
(equal).

DATA AVAILABILITY

The data that support the findings of this study are openly
available in Zenodo at http://doi.org/10.5281/zenodo.7540840,
Ref. 27.

REFERENCES
1B. Kailkhura, B. Gallagher, S. Kim, A. Hiszpanski, and T. Y.-J. Han, “Reliable
and explainable machine-learning methods for accelerated material discovery,”
npj Comput. Mater. 5, 108 (2019).
2J. Tenenbaum, “Learning the structure of similarity,” Adv. Neural Inf. Process.
Syst. 8, 3–9 (1995).
3J. Tenenbaum, V. Silva, and J. Langford, “A global geometric framework for
nonlinear dimensionality reduction,” Science 290, 2319–2323 (2000).
4Y. Yang, F. Liang, S. Yan, Z. Wang, and T. S. Huang, “On a theory of nonpara-
metric pairwise similarity for clustering: Connecting clustering to classification,”
Adv. Neural Inf. Process. Syst. 27, 145–153 (2014).
5C. Chen, O. Li, D. Tao, A. Barnett, C. Rudin, and J. K. Su, “This looks like that:
Deep learning for interpretable image recognition,” in Advances in Neural
Information Processing Systems, edited by H. Wallach, H. Larochelle,
A. Beygelzimer, F. d’Alché-Buc, E. Fox, and R. Garnett (Curran Associates, Inc.,
2019), Vol. 32.
6B. Letham, C. Rudin, T. H. McCormick, and D. Madigan, “Interpretable classi-
fiers using rules and Bayesian analysis: Building a better stroke prediction
model,” Ann. Appl. Stat. 9, 1350–1371 (2015).
7C. Rudin, “Stop explaining black box machine learning models for high stakes
decisions and use interpretable models instead,” Nat. Mach. Intell. 1, 206–215
(2019).
8B. R. Goldsmith, M. Boley, J. Vreeken, M. Scheffler, and L. M. Ghiringhelli,
“Uncovering structure-property relationships of materials by subgroup discov-
ery,” New J. Phys. 19, 013031 (2017).
9R. Ramprasad, R. Batra, G. Pilania, A. Mannodi-Kanakkithodi, and C. Kim,
“Machine learning in materials informatics: Recent applications and prospects,”
npj Comput. Mater. 3, 54 (2017).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 133, 053904 (2023); doi: 10.1063/5.0134999 133, 053904-12

© Author(s) 2023

https://www.scitation.org/doi/suppl/10.1063/5.0134999
http://doi.org/10.5281/zenodo.7540840
http://doi.org/10.5281/zenodo.7540840
https://doi.org/10.1038/s41524-019-0248-2
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1214/15-AOAS848
https://doi.org/10.1038/s42256-019-0048-x
https://doi.org/10.1088/1367-2630/aa57c2
https://doi.org/10.1038/s41524-017-0056-5
https://aip.scitation.org/journal/jap


10D.-N. Nguyen, T.-L. Pham, V.-C. Nguyen, T.-D. Ho, T. Tran, K. Takahashi,
and H.-C. Dam, “Committee machine that votes for similarity between materi-
als,” IUCrJ 5, 830–840 (2018).
11D.-N. Nguyen, T.-L. Pham, V.-C. Nguyen, H. Kino, T. Miyake, and H.-C. DAM,
“Ensemble learning reveals dissimilarity between rare-earth transition binary alloys
with respect to the Curie temperature,” J. Phys.: Mater. 2, 034009 (2019).
12J. Bardeen, L. N. Cooper, and J. R. Schrieffer, “Theory of superconductivity,”
Phys. Rev. 108, 1175–1204 (1957).
13A. Seko, A. Togo, and I. Tanaka, “Descriptors for machine learning of materi-
als data,” in Nanoinformatics, edited by I. Tanaka (Springer Singapore,
Singapore, 2018), pp. 3–23.
14A. Tversky, “Features of similarity,” Psychol. Rev. 84, 327–352 (1977).
15R. L. Goldstone, D. L. Medin, and J. Halberstadt, “Similarity in context,”
Mem. Cognit. 25, 237–255 (1997).
16G. Shafer, A Mathematical Theory of Evidence (Princeton University Press, 1976).
17T. Denœux, D. Dubois, and H. Prade, “Representations of uncertainty in artifi-
cial intelligence: Beyond probability and possibility,” in A Guided Tour of
Artificial Intelligence Research, edited by P. Marquis, O. Papini, and H. Prade
(Springer-Verlag, 2020), Vol. 1, Chap. 4, pp. 119–150.
18A. P. Dempster, “Upper and lower probabilities induced by a multivalued
mapping,” Ann. Math. Stat. 38, 325–339 (1967).
19N. Nu Thanh Ton, M.-Q. Ha, T. Ikenaga, A. Thakur, H.-C. Dam, and
T. Taniike, “Solvent screening for efficient chemical exfoliation of graphite,” 2D
Mater. 8, 015019 (2020).
20M.-Q. Ha, D.-N. Nguyen, V.-C. Nguyen, T. Nagata, T. Chikyow, H. Kino,
T. Miyake, T. Denœux, V.-N. Huynh, and H.-C. Dam, “Evidence-based recom-
mender system for high-entropy alloys,” Nat. Comput. Sci. 1, 470–478 (2021).
21C. Williams and C. Rasmussen, “Gaussian processes for regression,” in
Advances in Neural Information Processing Systems 8, Max-Planck-Gesellschaft
(MIT Press, Cambridge, MA, 1996), pp. 514–520.
22M. Lázaro-Gredilla, S. Van Vaerenbergh, and N. D. Lawrence, “Overlapping
mixtures of Gaussian processes for the data association problem,” Pattern
Recognit. 45, 1386–1395 (2012).
23V. Vovk, “Kernel ridge regression,” in Empirical Inference (Springer, 2013),
pp. 105–116.
24L. Breiman, “Random forests,” Mach. Learn. 45, 5–32 (2001).

25A. Jain, J. Mao, and K. Mohiuddin, “Artificial neural networks: A tutorial,”
Computer 29, 31–44 (1996).
26P. Smets, “Belief functions: The disjunctive rule of combination and
the generalized Bayesian theorem,” Int. J. Approx. Reason. 9, 1–35
(1993).
27H.-C. Dam (2023). “Datasets of binary and quaternary alloys with Curie tem-
perature and magnetization for the eRSM,” Zenodo. http://doi.org/10.5281/
zenodo.7540840.
28P. Villars, M. Berndt, K. Brandenburg, K. Cenzual, J. Daams,
F. Hulliger, T. Massalski, H. Okamoto, K. Osaki, A. Prince, H. Putz, and
S. Iwata, “The Pauling File, binaries edition,” J. Alloys. Compd. 367, 293–297
(2004).
29Y. Xu, M. Yamazaki, and P. Villars, “Inorganic materials database for explor-
ing the nature of material,” Jpn. J. Appl. Phys. 50, 11RH02 (2011).
30H. C. Dam, V. C. Nguyen, T. L. Pham, A. T. Nguyen, K. Terakura, T. Miyake,
and H. Kino, “Important descriptors and descriptor groups of Curie tempera-
tures of rare-earth transition-metal binary alloys,” J. Phys. Soc. Jpn. 87, 113801
(2018).
31T. Fukushima, H. Akai, T. Chikyow, and H. Kino, “Automatic exhaustive cal-
culations of large material space by Korringa-Kohn-Rostoker coherent potential
approximation method applied to equiatomic quaternary high entropy alloys,”
Phys. Rev. Mater. 6, 023802 (2022).
32Y.-Y. Ahn, J. P. Bagrow, and S. Lehmann, “Link communities reveal multiscale
complexity in networks,” Nature 466, 761–764 (2010).
33D. Reynolds, “Gaussian Mixture Models,” in Encyclopedia of Biometrics, edited
by S. Z. Li and A. K. Jain (Springer, Boston, MA, 2015).
34A. H. Murphy, “The Finley affair: A signal event in the history of forecast
verification,” Weather Forecast. 11, 3–20 (1996).
35L. van der Maaten and G. Hinton, “Visualizing data using t-SNE,” J. Mach.
Learn. Res. 9, 2579–2605 (2008).
36T. L. Pham, H. Kino, K. Terakura, T. Miyake, and H. C. Dam, “Novel mixture
model for the representation of potential energy surfaces,” J. Chem. Phys. 145,
154103 (2016).
37H. Akai, M. Akai, S. Blügel, B. Drittler, H. Ebert, K. Terakura, R. Zeller, and
P. H. Dederichs, “Theory of hyperfine interactions in metals,” Prog. Theor. Phys.
Suppl. 101, 11–77 (1990).

Journal of
Applied Physics ARTICLE scitation.org/journal/jap

J. Appl. Phys. 133, 053904 (2023); doi: 10.1063/5.0134999 133, 053904-13

© Author(s) 2023

https://doi.org/10.1107/S2052252518013519
https://doi.org/10.1103/PhysRev.108.1175
https://doi.org/10.1037/0033-295X.84.4.327
https://doi.org/10.3758/BF03201115
https://doi.org/10.1214/aoms/1177698950
https://doi.org/10.1088/2053-1583/abc08a
https://doi.org/10.1088/2053-1583/abc08a
https://doi.org/10.1038/s43588-021-00097-w
https://doi.org/10.1016/j.patcog.2011.10.004
https://doi.org/10.1016/j.patcog.2011.10.004
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1109/2.485891
https://doi.org/10.1016/0888-613X(93)90005-X
http://doi.org/10.5281/zenodo.7540840
http://doi.org/10.5281/zenodo.7540840
http://doi.org/10.5281/zenodo.7540840
https://doi.org/10.1016/j.jallcom.2003.08.058
https://doi.org/10.1143/JJAP.50.11RH02
https://doi.org/10.7566/JPSJ.87.113801
https://doi.org/10.1103/PhysRevMaterials.6.023802
https://doi.org/10.1038/nature09182
https://doi.org/10.1007/978-1-4899-7488-4_196
https://doi.org/10.1175/1520-0434(1996)011%3C0003:TFAASE%3E2.0.CO;2
https://doi.org/10.1063/1.4964318
https://doi.org/10.1143/PTPS.101.11
https://doi.org/10.1143/PTPS.101.11
https://aip.scitation.org/journal/jap

	Evidence-based data mining method to reveal similarities between materials based on physical mechanisms
	I. INTRODUCTION
	II. METHODOLOGY
	A. Collecting sources of similarity evidence
	B. Modeling evidence by mass functions
	C. Dempster’s rule in combining evidence

	III. EXPERIMENTS AND RESULTS
	A. Datasets
	B. Assessment of the similarity between transition rare-earth metal binary alloys based on mechanisms of Curie temperature
	C. Assessment of the similarity between quaternary high-entropy alloys based on mechanisms of magnetization
	D. Assessment of the similarity between the quaternary high-entropy alloys based on mechanisms of Curie temperature
	E. Discussion of the obtained similarities between materials and the associated physical mechanisms

	IV. CONCLUSIONS
	SUPPLEMENTARY MATERIAL
	AUTHOR DECLARATIONS
	Conflict of Interest
	Author Contributions

	DATA AVAILABILITY
	References


