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Abstract 

We developed and implemented a fully automated method to perform X-ray photoelectron 

spectroscopy (XPS) spectral analysis based on the active Shirley method and information criteria. Our 

method searches a large number of initial fitting models by changing the degree of smoothing, and then 

optimizes the peak parameters and background parameters to obtain a large number of fitting results. The 

goodness of those optimized models is ranked using information criteria. As a result of applying this 

algorithm to measured XPS spectra, we found that, using the Bayesian information criterion (BIC), a 

simple model with reasonably good agreement and a moderate number of peaks was selected. The model 

selected by the BIC was close to the result of peak fitting performed by XPS analysis experts. 
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1. Introduction 

High-throughput measurement has become increasingly important for the efficient development of 

science and technology, and accumulation of large amounts of spectral data is urgently required. Even in 

X-ray photoelectron spectroscopy (XPS), which is a time-consuming characterization technique, the use 

of high-intensity synchrotron radiation and a high sensitivity detector enables us to obtain a large amount 

of spectral data over a short time period. Therefore, high throughput of data processing is also required 

for efficient spectral data analysis. In the present work, we develop and implement a fully automated 

method to perform XPS spectral analysis. 

In analyzing an XPS spectrum, the background estimation before peak fitting greatly affects the 

determination of the peak area. It is to be noted that the peak fitting mentioned here refers to the 

approximate individual peaks constituting the XPS spectrum by Voigt functions. For the XPS background 

estimation, there are several conventional methods commonly employed, such as the linear method, the 
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Shirley method [1-2], and the Tougaard method [3], but we adopted a background estimation method 

known as the active Shirley method proposed by Herrera-Gomez et al. [4]. This method was chosen 

because it is robust to spectral noises and the end-points of the analysis range of the spectrum selected by 

the analyst/operator, and it is suitable for automatic analysis of spectra. We have developed an automatic 

analysis tool for XPS spectra based on the active Shirley method and showed that it can perform 

automatic peak fitting and film thickness evaluation with excellent reproducibility for SiO2 thin film 

samples [5-6].  

Because this tool mathematically solves the nonlinear least squares problem by the Marquardt method, 

the result of the peak fitting can be a local solution that is strongly dependent on the initial parameters of 

the peak (number of peaks, energy position, height, etc.). This tendency becomes more obvious when the 

shape of the XPS spectrum has a complicated shoulder structure or satellite structure, or when the 

statistical noise is large because there are many local solutions. Therefore, the peak fitting result is largely 

dispersed without converging to the global solution due to the differences in the initial parameters of the 

peaks. 

In this research, to make the active Shirley method applicable to XPS spectra with complicated shapes 

and a high degree of statistical noise, we developed a heuristic algorithm that systematically sets initial 

numbers of peaks and automatically extracts a candidate for the global solution. To systematically set the 

initial numbers of the peak, we adopted a method to systematically change the degree of smoothing 

applied to the spectrum. By applying the active Shirley method for each initial peak parameter generated 

in this manner, we methodically obtain many solutions with an automatically estimated background and 

peaks. Akaike information criterion (AIC) and Bayesian information criterion (BIC) were used as 

indicators for extracting the desired solution (a candidate for the global solution) from these many 

solutions. 

 

2. Estimation of optimum solution of XPS peak and background 

In this section, we describe the details of our proposed method for the estimation of the optimum 

solution of the XPS peak and background. Fig. 1 shows a flow chart of our proposed method. Our 

algorithm is roughly divided into three processes: process 1 creates the initial models, as described in 

sections 2.1 to 2.3; process 2 optimizes the parameters for all the models, as described in section 2.3; and 

process 3 chooses the best model using information criteria, as described in section 2.4. 

 

2.1 Systematic search for initial values of XPS peak 

To provide a variety of different initial fitting models, we systematically scanned the degree of 

smoothing applied to a given spectrum. Here, we used the Savitzky-Golay smoothing method [7], the 

degree of which is tuned by the parameters of smoothing data points and repeat count. We started with a 

weak smoothing and applied smoothing gradually and strongly but to the extent that the original spectrum 
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shape is not lost. To approach the global solution in a short time calculation, it is necessary to adjust the 

coarseness/denseness of the search step in the initial fitting models which changed the degree of the 

smoothing. As a result of studies on various XPS spectra described in section 3, we found a preferable 

way to apply sequential smoothing. First, 5-points smoothing was performed 480 times, further 7-point 

smoothing was performed 480 times, and similarly, 9-points, 11-points, 13-points, and 15-points 

smoothings were sequentially performed 480 times. Eventually, we performed a total of 2,880 smoothings. 

We started from smoothing with a small width of window in the initial stage where spectral noise is 

noticeable. We then performed smoothing with a larger window as the spectrum shape became smooth. In 

that manner, we generated a series of initial fitting models that were evenly distributed for the number of 

peaks.  

By systematically strengthening the degree of smoothing, we generated various initial values of peaks 

and backgrounds and then peak parameters (number of peaks, energy position, and height, etc.) were 

optimized for each initial value. We selected the 155 smoothing conditions from the above-mentioned 

2,880 smoothings to save the computational time of optimizing the peak parameters at every smoothing 

stage. Optimization is carried out every two times until the smoothing time is increased to the 40th time, 

followed by every 4 times up to the 80th time, every 8 times up to the 240th time, every 16 times up to 

the 960th time, and then optimized for every 32 times up to the 2,880th time. As a result, we obtained 155 

optimization models in total. 

 

2.2 Model function describing XPS peaks 

The model function, 𝑓𝑓(𝑥𝑥) of an XPS spectrum is given by 

Fig. 1. Flow chart of our proposed method, which is roughly divided into three processes: process 1 creates the initial 
models, process 2 optimizes the parameters for all the models, and process 3 chooses the best model using information 
criteria. 
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𝑓𝑓(𝑥𝑥) = �𝐴𝐴𝑘𝑘𝑉𝑉(𝑥𝑥; 𝜇𝜇𝑘𝑘,𝑤𝑤𝑘𝑘 , 𝑟𝑟𝑘𝑘)
𝐾𝐾

𝑘𝑘=1

+ 𝑏𝑏(𝑥𝑥; 𝐼𝐼𝑆𝑆, 𝐼𝐼𝐸𝐸) (1) 

as a function of the binding energy, 𝑥𝑥. The first term of Eq. (1) is the linear combination of 𝐾𝐾 

pseudo-Voigt functions, 𝑉𝑉(𝑥𝑥;𝜇𝜇𝑘𝑘 ,𝑤𝑤𝑘𝑘 , 𝑟𝑟𝑘𝑘): 

𝑉𝑉(𝑥𝑥;𝜇𝜇,𝑤𝑤, 𝑟𝑟) = 𝑟𝑟𝑟𝑟(𝑥𝑥, 𝜇𝜇,𝑤𝑤) + (1 − 𝑟𝑟)𝐺𝐺(𝑥𝑥,𝜇𝜇,𝑤𝑤), (2) 

𝐿𝐿(𝑥𝑥, 𝜇𝜇,𝑤𝑤) =
1

1 + �𝑥𝑥 − 𝜇𝜇
𝑤𝑤 �

2 , (3) 

𝐺𝐺(𝑥𝑥, 𝜇𝜇,𝑤𝑤) = exp �−(log 2) �
𝑥𝑥 − 𝜇𝜇
𝑤𝑤

�
2
� = 2−�

𝑥𝑥−𝜇𝜇
𝑤𝑤 �

2

, (4) 

where 𝐴𝐴 is the peak height, 𝜇𝜇 is the peak position, 𝑤𝑤 is the half width at half maximum (HWHM) of 

the peak, and 𝑟𝑟 is the Lorentz-Gauss mixing ratio. In our framework, we adopted the sum type of the 

pseudo-Voigt function [8], whose shape is defined by two parameters: a width and a mixing ratio, where 

the Lorentzian width and Gaussian width are the same. 𝐿𝐿(𝑥𝑥, 𝜇𝜇,𝑤𝑤) and 𝐺𝐺(𝑥𝑥, 𝜇𝜇,𝑤𝑤) are, respectively, a 

Lorentzian and a Gaussian function normalized to 1 in height. The mixing ratio, 𝑟𝑟, is in the range 0 ≤

𝑟𝑟 ≤ 1, and the Lorentzian function and the Gaussian function can be mixed at an arbitrary ratio. The 

second term of Eq. (1), i.e. 𝑏𝑏(𝑥𝑥; 𝐼𝐼𝑆𝑆, 𝐼𝐼𝐸𝐸), corresponds to the background. Based on the approximation of 

the Shirley method [1-2], the background 𝑏𝑏(𝑥𝑥; 𝐼𝐼𝑆𝑆, 𝐼𝐼𝐸𝐸) is expressed by  

𝑏𝑏(𝑥𝑥; 𝐼𝐼𝑆𝑆, 𝐼𝐼𝐸𝐸) = (𝐼𝐼𝑆𝑆 − 𝐼𝐼𝐸𝐸)
𝑄𝑄

𝑃𝑃 + 𝑄𝑄
+ 𝐼𝐼𝐸𝐸 . (5) 

Here, 𝐼𝐼𝑆𝑆 and 𝐼𝐼𝐸𝐸  are spectral intensities at the end points (starting and ending points) of the higher 

binding energy side and the lower binding energy side of the analysis range, respectively. 𝑃𝑃 and 𝑄𝑄 are, 

respectively, the area of the peak intensity from the higher binding energy end-point to 𝑥𝑥 and the area of 

the peak intensity from the lower binding energy end-point to 𝑥𝑥. 

 

2.3 Detection of initial XPS peak and method of shape optimization 

We subtracted the initial background from the measured spectrum by the usual iterative Shirley method 

[2], then calculated the smoothed third-order differential spectrum on the background spectrum using the 

Savitzky-Golay method [7]. We used that zero point to find the initial peak position and HWHM [5]. The 

initial value of the Lorentz-Gauss mixing ratio was set to zero to provide a pure Gaussian.  

We optimized the peaks and backgrounds after determining their initial values as shown in the flow 

chart. We used the Levenberg-Marquardt method, which is well known as a solution to the nonlinear 

optimization problem [9-10]. This method combines the steepest descent method and the Gauss-Newton 

method, converging quickly to the optimum solution. As a result, all of the parameters included in the 

model function can be optimized to minimize the sum of the squares of the residual between the measured 

spectrum (including noise) and the model function described by Eq. (1). However, depending on the XPS 

spectrum, the parameters may oscillate during the iteration in the Levenberg-Marquardt method. Thus, to 
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suppress the oscillation, we finally adopted a modified Marquardt method by Fletcher [11] with devised 

diagonal matrix elements employed when updating the parameters.  

After peak and background optimization, we often see tiny peaks with negligible area intensity or 

extremely sharp peaks. Such peaks are removed by imposing constraint conditions. Specifically, we 

excluded these peaks that occupy <1% of the total peak area or are sharper than the energy resolution of 

the XPS analyzer (e.g. full width half maximum <0.2 eV). After peaks were removed, optimization was 

performed again. We repeated this procedure until there was no need for peak removal.  

 

2.4 Model selection by AIC and BIC 

We prepared initial values of various peak numbers, optimized the peaks and background for each 

initial value, and obtained the final fitting results. Generally, the larger the number of peaks that increase, 

the smaller becomes the difference (i.e. error function) between the model function and the measured 

spectrum. However, this causes over-fitting, where the model function becomes too complicated such that 

physical interpretation is impossible. In order to avoid this over-fitting, it is necessary to take not only the 

error function but also the trade-off with the model complexity into consideration. As a simple method for 

doing so, we considered AIC and BIC as model selection criteria [12-13]. 

The calculation formulae of AIC and BIC are as follows.  

AIC＝− 2 log 𝐿𝐿� + 2𝑚𝑚, (6) 

BIC＝ − 2 log 𝐿𝐿� + 𝑚𝑚 log 𝑁𝑁. (7) 

𝐿𝐿� is the maximum likelihood calculated from the likelihood between the measured spectrum {𝑦𝑦𝑖𝑖}𝑖𝑖=1𝑁𝑁  and 

the model function {𝑓𝑓𝑖𝑖}𝑖𝑖=1𝑁𝑁  obtained as a result of optimization. 𝑁𝑁 is the number of data points of the 

spectrum, and 𝑚𝑚 is the number of parameters included in the model function. For one peak, there are 

four parameters: height, position, HWHM, and Lorentz-Gauss mixing ratio. There are also two 

parameters for determining the background based on the approximation of the Shirley method. Therefore, 

the number of parameters is calculated as 𝑚𝑚 = 4𝐾𝐾 + 2, where the number of peaks is 𝐾𝐾. For both AIC 

and BIC, the first term is the degree of matching between the model function and the measured data, and 

the second term is the penalty due to the complexity of the model. We calculated AIC and BIC for 155 

optimized results, and judged that the best model is obtained from the smallest values of AIC and BIC, 

respectively. Note that the values of different information criteria (e.g., AIC and BIC) must not be 

compared because AIC and BIC are different feature quantities. 

The first term of AIC and BIC is calculated as follows. For simplicity, we approximated that the noise 

on the measured spectrum has a uniform Gaussian distribution. It is known that the noise observed in 

XPS spectra actually follows a Poisson distribution. However, the Gaussian noise is a good 

approximation when the background intensity is sufficiently larger than the peak intensity. We assumed 
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that the noise at each spectral data point follows a uniform Gaussian distribution with variance 𝜎𝜎2. The 

probability density, 𝑝𝑝𝑖𝑖 , is then given as: 

𝑝𝑝𝑖𝑖 =
1

√2𝜋𝜋𝜎𝜎2
exp �−

(𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖𝑖)2

2𝜎𝜎2
� . (8) 

The likelihood of the whole spectrum is 

𝐿𝐿 = �𝑝𝑝𝑖𝑖

𝑁𝑁

𝑖𝑖=1

. (9) 

The logarithm of the maximum likelihood 𝐿𝐿� can be obtained as: 

−2 log 𝐿𝐿� = 𝑁𝑁{log(2𝜋𝜋𝜎𝜎�2) + 1}, (10) 

𝜎𝜎�2 =
1
𝑁𝑁
�(𝑦𝑦𝑖𝑖 − 𝑓𝑓𝑖𝑖)2
𝑁𝑁

𝑖𝑖=1

. (11) 

Note that when using AIC or BIC to evaluate the model selection of XPS spectra, we need to align the 

energy range and the number of spectral data points 𝑁𝑁 to compare all optimized models.  

 

3. Calculation results 

We applied this model selection to 143 XPS experimental spectra. The experimental spectral data were 

obtained from three sources: (1) our measurement data, (2) the database in the MultiPak (ULVAC-PHI) 

software, and (3) the database in the COMPRO software. We also applied our method to artificial 

spectrum data with small and large noise, and present the results in Appendix A. 

 

For XPS measurements, we used the AXIS-ULTRA DLD (delay-line detector, Shimadzu/Kratos) 

equipped with the Al Kα (1486.6 eV) monochromatic X-ray source. We applied our method to 12 

measurement data of Bi-based high-temperature superconductor Bi2Sr2Can-1CunOy and other metal oxides, 

such as CuO and Fe2O3. We used typical core level spectra of 81 elements excited by Al Kα from 3Li to 
92U in the XPS spectrum database of the MultiPak software (ULVAC-PHI Inc.) [14]. From the XPS 

spectral database provided in the COMPRO software [15], we selected 50 XPS spectra of oxides, such as 

SiO2, Al2O3, PbO, NiO, and Dy2O3, and organic polymers, such as polyethylene terephthalate (PET) and 

polyvinyl methyl ketone (PVMK). Among these 143 spectra, we will show the analysis results of C1s of 

carbon contamination on a copper oxide surface and the valence spectrum of an organic polymer.  

The specification of the PC was as follows: the OS was Windows 10 (64bit, desktop type), the 

processor was Intel Xeon CPU E5-2620 v4 (2.10 GHz), and the RAM was 32.0 GB. Regarding the 

computational time of our calculation, the case of the C1s spectrum took 5.4 sec in total: 0.3 sec to create 

the initial models and 5.1 sec to optimize the parameters for all the models. The case of the valence 

spectrum took 4.4 sec in total: 0.3 sec to create the initial models and 4.1 sec to optimize the parameters 

for all the models. 
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3.1. C1s spectrum of carbon contamination on copper oxide surface 

Application of our method generated 155 different optimization models. The AIC and BIC values as a 

function of the number of peaks of each model are plotted in Fig. 2.  

The peak numbers are systematically varied by changing the degree of the smoothing. One can see that 

there is a minimal point for each of the AIC and BIC diagrams. This tendency can be explained by the 

tradeoff between the negative logarithmic likelihood [first term in Eq. (1)] and the penalty term [second 

term in Eq. (1)]. When the number of peaks is lower, the reproduction of the measured spectrum by the 

model function becomes worse, and the negative logarithmic likelihood of the first term of the 

information criterion increases. Conversely, when the number of peaks is higher, the reproduction of the 

spectrum is improved and the negative log likelihood becomes smaller and approaches a constant value. 

However, the penalty term will continue to increase as the number of peaks increases, so the information 

criterion will also become large. As a result, the information criterion diagram reaches a minimum value 

when the likelihood and penalty terms are moderately sized. 

Fig. 2 also shows that there are several or many AIC/BIC values for each peak number. The reason for 

this is that even with the same number of peaks, there are various local solutions depending on the initial 

values of peak position, height, width, and Lorentz-Gauss mixing ratio.  

Fig. 2. AIC (a) and BIC (b) values as a function of the number of peaks for the C1s spectrum of carbon contamination of a 
copper oxide surface. 

(a) (b) 

Fig. 3. Fitting results when minimizing AIC (a) and BIC (b) corresponding to the circled models in Fig. 2(a) and Fig. 2(b), 
respectively. 

(a) (b) 
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In Fig. 2, the data point indicated by a red circle corresponds to the model function that minimizes AIC 

or BIC for the C1s example spectrum. A model with nine peaks was adopted when we used AIC for 

model selection, while a model with two peaks was adopted when we used BIC. Looking at the AIC 

diagram, we can see that the minimum values of AIC at peak numbers five, six and nine are almost the 

same values. In those cases, the likelihood term and the penalty term in the equation of AIC are roughly 

balanced in a wide range of number of peaks, and therefore it is difficult to determine the best model 

functions. However, when using BIC, there is a clear minimum value when the number of peaks is two. 

That is because the slope of the penalty term in BIC is larger than in AIC. The variance of BIC values is 

large when the number of peaks is two, which means that many local solutions are searched through our 

approach. The best model among them is the one with the minimum BIC value. 

Fig. 3 shows the fitting results corresponding to the red circles in Fig. 2 when each of AIC and BIC 

were minimized. Both AIC and BIC detect the major peaks in an energy range of 282 eV to 291 eV. There 

are also minor peak structures that would be difficult to determine visually by an analyst. In such cases, 

BIC does not recognize them as peaks, but AIC does. Generally, BIC adopts a model with a smaller 

number of peaks than AIC. This is because the number of data points of the spectrum in Eq. (7) is 

sufficiently large, and the penalty term for BIC, 𝑚𝑚 log𝑁𝑁, is larger than the AIC penalty term of 2𝑚𝑚.  

 

3.2. Valence spectrum of polyvinyl methyl ketone 

https://doi.org/10.1016/j.elspec.2019.146903
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Next, we treated the valence spectrum of the organic polymer polyvinyl methyl ketone as an example 

of a spectrum with intense noise and some structures over a wide energy range. Applying our method to 

this spectrum, we obtained the results shown in Fig. 4. A point indicated by a red circle corresponds to the 

model function that minimizes AIC or BIC, and the fitting results of the model function are as shown in 

Fig. 5. As in the case of Fig. 3, both AIC and BIC detect the major peaks, and BIC adopts a model with a 

smaller number of peaks than AIC.  

 

3.3. Summary of other calculation results 

We confirmed the effectiveness of our method for other spectra. In 137 XPS spectra (96% of the 

sample set), we find that the model selected by BIC has the following features: All major peaks that can 

be easily identified visually are detected, and peaks that are difficult to distinguish visually are not 

detected. That is to say, BIC tends to choose the simplest model for XPS spectra.  

If the background of a spectrum is lower on the high binding energy side than on the low binding 

energy side (because of the matrix background), the Shirley method cannot be applied in principle. 

Therefore, such a spectrum was excluded from the current analysis.  

Another approach might be employed, namely using Markov chain Monte Carlo (MCMC) methods 

Fig. 4. AIC (a) and BIC (b) values as a function of the number of peaks for the valence spectrum of polyvinyl methyl ketone. 

(a) (b) 

Fig. 5. Fitting results when minimizing AIC (a) and BIC (b) corresponding to the circled models in Fig. 4(a) and Fig. 4(b), 
respectively. 

(a) (b) 

https://doi.org/10.1016/j.elspec.2019.146903


Author Manuscript: 
Published in final edited form as: J. Electron Spectrosc. Relat. Phenom. 239 (2020) 146903 
https://doi.org/10.1016/j.elspec.2019.146903  

10 
 

and Bayesian estimation to perform the model selection more correctly than our methodology. However, 

such a method is time consuming and our approach is useful because the calculation time is short enough 

for practical use (<20 s for 87 of the 143 experimental spectra studied). 

Note that the current algorithm is useful for optimizing statistically and automatically the model 

functions but it may simplify them from the view point of physical property knowledge of the electronic 

structure of the target material and the generation process of photoelectrons. Our method is, therefore, 

useful to automatically present statistically valid candidate models prior to examining the XPS spectrum 

based on physical knowledge. 

 

4. Discussion 

We have previously reported on an active Shirley algorithm [5]. Using this conventional method, we 

analyzed the C1s and valence spectra with a poor signal to noise ratio introduced earlier and obtained the 

results shown in Fig. 6. From this, a large number of sharp peaks, which can be regarded as noise, 

remained.  

By the conventional method, only one smoothing procedure was given, so we obtained only one 

optimization model. Therefore, there is a disadvantage that the optimization is easily trapped by the local 

solution including sharp peaks originated from noise. However, in our current method we systematically 

elevated the smoothing degree and obtained many optimization models. We then applied the information 

criterion for those optimization models. In a model including sharp peaks, the number of peaks increases, 

and the penalty term also increases compared with the small degree of improvement of the likelihood 

term. As a result, an optimized model consisting only of major peaks tends to be selected. However, it 

should be noted that, depending on the spectral shape and signal to noise ratio, there are rare cases where 

an optimized model does not fully exclude sharp peaks, not only by AIC but also by BIC.  

Regarding the application limits of our method, the Shirley background cannot be drawn when the 

intensity on the high binding energy side is lower than the intensity on the low binding energy side. In 

such a case, our program does not work, but generally there is a way to draw a straight line background. 

Fig. 6. Fitting results when using the previous active Shirley method for the C1s spectrum of carbon contamination on copper 
oxide surface (a) and for the valence spectrum of polyvinyl methyl ketone (b). 

(a) (b) 
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As shown in section 2.2, we adopted the pseudo-Voigt function in our algorithm. Of course, it is 

important to use the convoluted Voigt function as a basis function, which will be future work. 

 

5. Conclusions 

We have developed an algorithm using the Levenberg-Marquardt method as a mathematical solution 

based on the active Shirley method for automatic peaks and background separation of XPS spectra. For a 

spectrum with a complex shape or a spectrum with a poor signal to noise ratio, we found there are cases 

where the previous active Shirley algorithm can only obtain a local solution and cannot obtain a 

reasonable solution from the viewpoint of XPS analysis experts. We therefore developed the following 

new algorithm to overcome this issue. Because the Levenberg-Marquardt method generally obtains local 

solutions dependent on the initial parameters, we decided to obtain many local solution groups from a 

large number of initial parameter groups depending on the degree of smoothing. Then, a better or best 

solution is selected from the local solution groups. Specifically, we systematically perform round robin 

from weak to strong smoothing on a spectrum to obtain many fitting results. Subsequently, a good model 

is selected by applying the Akaike information criterion (AIC) or the Bayesian information criterion 

(BIC) to the fitting results. As a result of applying this algorithm to measured XPS spectra, we found that 

using the AIC, a model with a large number of peaks and a good agreement with the spectrum was 

selected. And we found that using the BIC, a simple model with reasonably good agreement and a smaller 

number of peaks was selected. The model selected by BIC is closer to the result of peak fitting performed 

by XPS analysis experts. 
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Appendix. Results for artificial spectrum data 

To compare two cases in which the statistical noise is small and large, we show the results of applying 

our proposed method to the artificial spectrum data. Using parameters similar to the C1s spectrum shown 

in Fig. 2, we prepared two spectra that consisted of two peaks, a prominent main peak and a sub-peak, 

that differed only in the magnitude of the noise. The peak parameters of the main peak and sub-peak were 

(𝐴𝐴1, 𝜇𝜇1,𝑤𝑤1, 𝑟𝑟1) = (520, 284.8, 0.66, 0.5), (𝐴𝐴2,𝜇𝜇2,𝑤𝑤2, 𝑟𝑟2) = (60, 287.5, 1.83, 0.0) , and the background 

parameter was (𝐼𝐼𝑆𝑆, 𝐼𝐼𝐸𝐸) = (400.0, 380.0), using the symbols defined in section 2.2. The range of binding 

energy was from 300 eV to 275 eV, the energy step was 0.1 eV, and the number of data points was 251. 

We applied noise according to the Gaussian distribution, and generated two spectra by selecting two 

standard deviation values of the Gaussian distribution: 2.0 and 50.0. The corresponding S/N ratios were 
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500 and 20, respectively. We show the generated artificial spectra in Figs. 7(a) and (b). 

Figs. 7(c) to (f) show the results applied to a spectrum with small and large noise. When the noise was 

small, the number of peaks to be searched was 1 to 6. When the noise was large, the number of peaks to 

be searched was 1 to 17. We found that the number of peaks searched was limited when the noise was 

small. Figs. 7(c) and (d) show that when the noise was small, the BIC values at some peak number were 

concentrated at the same value. By contrast, when the noise was large, we observed that the BIC values 

were scattered. This means that when the noise was small, it was easy to converge to the global solution, 

and conversely, when the noise was large, optimization was difficult and trapped in the local solution. Our 

method allowed model selection based on the BIC. When the noise was small, our method correctly 

selected the model with two peaks as the best BIC model. By contrast, when the noise was large, it was 

difficult to detect the sub-peak as a peak, and the model with one peak was selected as the best BIC 

model. 

 

 

https://doi.org/10.1016/j.elspec.2019.146903


Author Manuscript: 
Published in final edited form as: J. Electron Spectrosc. Relat. Phenom. 239 (2020) 146903 
https://doi.org/10.1016/j.elspec.2019.146903  

14 
 

 

 

Fig. 7. (a) and (b) are two artificial spectra with small noise (S/N=500) and large noise (S/N=20), respectively. (c) and (d) are 
the results of BIC values as a function of the number of peaks for each artificial spectrum. The dashed lines show the true 
number of peaks 2. (e) and (f) are the fitting results when minimizing BIC corresponds to the circled models in (c) and (d), 
respectively.  

(a) 

(c) 

(e) 

(b) 

(d) 

(f) 

S/N=500 S/N=20 

S/N=500 S/N=20 

S/N=500 S/N=20 
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