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ABSTRACT
Machine learning is emerging as a powerful tool for the discovery of novel high-performance
functional materials. However, experimental datasets in the polymer-science field are typically
limited and they are expensive to build. Their size (< 100 samples) limits the development of
chemical intuition from experimentalists, as it constrains the use of machine-learning algo-
rithms for extracting relevant information. We tackle this issue to predict and optimize
adhesive materials by combining laboratory experimental design, an active learning pipeline
and Bayesian optimization. We start from an initial dataset of 32 adhesive samples that were
prepared from various molecular-weight bisphenol A-based epoxy resins and polyetheramine
curing agents, mixing ratios and curing temperatures, and our data-driven method allows us to
propose an optimal preparation of an adhesive material with a very high adhesive joint
strength measured at 35.8 ± 1.1 MPa after three active learning cycles (five proposed prepara-
tions per cycle). A Gradient boosting machine learning model was used for the successive
prediction of the adhesive joint strength in the active learning pipeline, and the model
achieved a respectable accuracy with a coefficient of determination, root mean square error
and mean absolute error of 0.85, 4.0 MPa and 3.0 MPa, respectively. This study demonstrates
the important impact of active learning to accelerate the design and development of tailored
highly functional materials from very small datasets.
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1. Introduction

In recent decades, interest in machine-learning (ML)
techniques has increased in various research fields
because of their outstanding efficiency to extract salient
information [1]. More recently in the field of materials
science, ML techniques have begun to play an impor-
tant role in the design and development of novel mate-
rials [2,3]. ML usually requires a large amount of data,
that is, > 1000 samples, to build accurate models [1].

Themain goal ofML inmaterials science is to search for
highly functional materials with properties that are
tailored to fit the requirements of a specific application
[2]. Recent studies demonstrate the potential of ML-
based experimental design to discover various new
functional materials in different fields within an active
learning framework. The active learning strategy is
typically efficient in improving prediction model. The
examples of this include finding very low thermal
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hysteresis NiTi-based shape memory alloys using adap-
tive experimental design [4], discovery of large electro-
strains in BaTiO3-based piezoelectrics using active
learning [5], searching high-temperature ferroelectric
perovskites by two-step machine learning [6], finding
BaTiO3-based ceramics with large energy storage at low
fields using machine learning and experimental design
[7] and discovery of new metallic glasses through itera-
tion of machine learning and high-throughput experi-
ments [8]. However, a ML based approach has not been
widely applied to the field of polymer science. One
major constraint is that experimental datasets in poly-
mer science are typically limited and expensive to con-
struct. A huge and comprehensive source of
information on polymer properties is not easily obtain-
able. Sometimes, the experimental dataset is scattered
[2]. Datasets that are collected from various literature
sources may be noisy and inconsistent because several
experimental factors affect any obtained sample and
measurements, such as process conditions, the source
and purity of used chemicals and environmental con-
ditions [9,10]. Particularly, if a material requires
a specific design, only few data are available. Thus, it
is challenging to obtain a sufficiently large curated data-
set, which limits the use of ML for polymer research.

The development of high-strength adhesives for
joint bonding is one of the cases where application-
specific design is needed. In addition to adhesive prop-
erties, several other factors influence the adhesive joint
strength (σad), such as: substrate properties, substrate
surface preparation, joint configuration, measurement
conditions and environmental factors. Hence, an
adhesive will behave differently under different joint-
design and bonding conditions [11]. In consequence,
the experimental dataset for an adhesive for one spe-
cific joint cannot be acquired easily because different
studies usually use different conditions, such as an
adhesive thickness, substrate surface treatment and
the joint configuration. Furthermore, no theoretical
and empirical knowledge exists to predict precisely the
σad from a modified adhesive system.

Various approaches have been exploited in the litera-
ture to modify the mechanical properties of adhesives,
such as the fracture toughness, elastic modulus and ten-
sile strength [12–15]. The modification of epoxy adhe-
sives by adjusting their network structure is one of the
most effective ways to provide a wide diversity of
mechanical properties. Using this approach, we can tailor
the adhesive properties tomeet a specific requirement for
joint bonding. In the case of adhesively bonded joints,
that is, when two substrates are bonded via an adhesive,
several properties are required to achieve a high σad.
A good resistance to crack growth as reflected by a high
fracture toughness and high flexibility of adhesives is
a desirable property to withstand the tensile stress con-
centration of joints [11]. The adhesive needs a reasonably
high elastic modulus to obtain a high-shear fracture

stress [11]. The interaction between an adhesive and
the substrates is important for controlling the fracture
behaviour of joints [16]. Because several factors influence
adhesively bonded joint properties, the development of
high-performance adhesives for joint bonding is more
complicated than that for the bulk form, and requires
further advanced techniques for achieving an exception-
ally high σad [11,17]. In the metal joining process, espe-
cially in structural bonding, an adhesive with high σad is
highly desired to resist joint failure and impact
forces [18].

Therefore, we propose a combination of the design
of experimental techniques with an active learning (as
known as optimal experimental design [19]) pipeline
and a Bayesian optimization to model and maximize
the σad from various mixtures to overcome the issues
presented above. Compared to other machine-learning-
based materials’ design approaches [4–8], our two-stage
data-driven approach allows us to propose an optimal
condition for achieving target property from a very
small dataset with designing controlled experiments,
and does not require data from previous literatures.
The first stage, active learning, aims to construct an
accurate ML model with a particular focus only on
a specific range of high σad. By refining the experimental
conditions in the second stage, the Bayesian optimiza-
tion is refined to search for the adhesive materials with
extremely high adhesive strength. This approach is fore-
seen to acceleratematerials design and reduce the devel-
opment cost and time, especially for which initial
number of samples is limited compared to the number
of combinations of free parameters for their
formulations.

We use an initial small experimental dataset that we
built and controlled. This dataset is focused on
a model adhesive system that is composed of conven-
tional bisphenol A-based epoxy resin and an amine-
terminated poly(propylene glycols) curing agent that
is described in Section 2.1. The use of these types of
epoxy resins and curing agents with different linear
chain lengths allows us to tailor the adhesive proper-
ties. Throughout this paper, σad is measured through
a single-lap shear test presented in Section 2.2. To
obtain epoxy adhesives with various network struc-
tures, 32 samples of epoxy adhesives were prepared
from different epoxy resin molecular weights (MWE),
curing agent molecular weights (MWC), amine-to-
epoxide ratios (r) and curing temperatures (Tcure)
according to conditions suggested by a Graeco–Latin
square design as shown in Section 2.3. The experi-
mental results are reported in Table S2 of the supple-
mental materials and they are used as our initial
curated dataset. Then, various ML models were
trained on this dataset to predict the σad. To enhance
the prediction accuracy of the most promising ML
model and to increase the dataset size (ns) iteratively,
an active learning pipeline was applied as detailed in
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Section 2.4. Therefore, specifically targeted experi-
ments for reaching a high σad were conducted. After
achieving experimental-like accuracy on σad predic-
tions, the obtained ML model was fixed. Finally,
a Bayesian optimization was used to optimize an
epoxy network structure in greater processing detail
and achieve the reported extreme high σad in this
study. Indeed, the Bayesian optimization highly
depends on its forward ML model for making propo-
sals. Then, avoiding the active learning step would be
equivalent to reduce the Bayesian optimization to
a naive random sampling of our features space. This
kind of strategy is here proposed in the case that the
initial dataset is very small, which is often found in the
field of polymer science. We present the promising
results in Sections 3.1 and 3.2 to accelerate the discov-
ery of new application-specific materials by using
a very small experimental dataset (few tens of sam-
ples). An understanding of those predictions, as dis-
cussed in Section 3.3, should provide valuable
knowledge for the future development of adhesive
materials. Finally, we conclude and discuss further
possible improvements in Section 4.

2. Experimental and ML methods

2.1. Materials

Diglycidyl ether of bisphenol A-based epoxy resin
(DGEBA) and amine-terminated poly(propylene gly-
col) curing agent (Jeffamine) with four different mole-
cular weights were used: MWE 2 {370, 1650, 2900,
3800} g/mol for the DGEBA (Mitsubishi Chemical,
Japan) and MWC 2 {230, 400, 2000, 4000} g/mol
for the Jeffamine (Sigma-Aldrich, Japan). The chemi-
cal structures of the DGEBA and Jeffamine are shown
in Figure 1. All chemicals were used as received with-
out further purification. Aluminium alloy A6061P-T6
(100 mm × 25 mm × 2 mm) was used as a substrate.
Prior to the adhesive joint fabrication, the substrate

surfaces were sandblasted and cleaned with ethanol
and acetone.

2.2. Preparation of adhesive joint specimens and
single-lap shear test

ADGEBA epoxy resin (5.0 g) was preheated at 190°C for
30 min to melt crystals. The Jeffamine curing agent was
added to the liquid epoxy resin at a specific ratio r 2
{0.75, 1.0, 1.25, 1.5}, where r < 1.0 indicates an epoxy
excess, r = 1.0 indicates a stoichiometricmixture between
the amine and epoxide and r > 1.0 indicates an amine
excess. For example, an r of 1.25 means 25% excess
amine. The epoxy resin and curing agent were mixed
by hand at 190°C for a few seconds to achieve
a homogeneous blend. This adhesive precursor was
spread over a 25 mm × 12.5 mm area on one face of
a pair of substrates. The two substrates were bonded
together and the overlapping area was fixed by metal
clamps as described previously [20]. An illustration of
the adhesive joint specimen is provided in Figure 2. The
prepared specimen was cured in an oven at a specific
temperature Tcure 2 {90, 130, 170, 210}°C for one hour.
The adhesive thickness wasmaintained at ~100 μmusing
0.1 parts per hundred resin of spherical glass bread
(Fujiseisakujo, Japan) as spacers. The four variable para-
meters used later as input features for the ML models
(see Section 2.4.2) are summarized in Table 1. The para-
meter values in Table 1 are typical values ofMWE,MWC,
r and Tcure for adhesive preparation. To be specific,MWE

and MWC were selected on the basis of commercially
available source material, and the values of r and Tcure

were chosen within a range that allow sample
preparation.

The single-lap shear test of the adhesive joint speci-
men was carried out by using a 10-kN AG-X plus
series universal tensile testing machine (Shimadzu,
Japan). All tests were performed at a 2-mm/min cross-
head speed at room temperature. The σad was calcu-
lated by dividing the maximum tension load by the

Figure 1. Chemical structures of diglycidyl ether of bisphenol A-based epoxy resin (DGEBA) and amine-terminated poly(propylene
glycols) curing agent (Jeffamine) and their curing reaction.
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area of overlap (25 mm × 12.5 mm). At least two
specimens were used for each measurement and the
average value was reported with the standard devia-
tion. Indeed, the maximum tension load that was
reached by the developed epoxy resin of the highest
σad exceeded 10 kN. Therefore, a second 50-kN AG-X
plus series universal tensile testing machine
(Shimadzu, Japan) was needed at the final stage of
our design study. The use of this second machine
was required only when we had reached the measure-
ment limitation of the first one.

2.3. Selection of experimental conditions for the
initial dataset

The experimental conditions in this study consisted of
256 possible conditions that were provided by
a combination of four molecular weights for the epoxy
resin and the curing agent, four amine-to-epoxide ratios
and four Tcure values (see Table 1). An initial set of ns = 32
samples was collected according to the conditions that
were suggested by a Graeco–Latin square design [21].
The Graeco–Latin square design is a design of experi-
mental techniques that can generate a uniform sample of
scattered data points [22]. By conducting two replicated
four-by-four Graeco–Latin square designs, 32 experi-
mental conditions were obtained.

2.4. ML method

Data pre-processing, data splitting and the application
of the ML algorithms was performed using the Python
package Scikit-learn (version 0.21) [23], and the
Bayesian optimization was executed using the
Python package GPyOpt [24].

2.4.1. Data pre-processing and splitting
The four variable parameters in this study (see Table 1)
were standardized following a standard Gaussian dis-
tribution of mean zero and standard deviation of one
[17]. A k-fold cross-validation of different ML algo-
rithms was performed [25]. The dataset was split ran-
domly into k folds of equal size. Each fold was used as
a training set by an ML algorithm with one other fold
kept as a test set. The process was repeated k times.
Their mean absolute error (MAE), root mean square
error (RMSE) and coefficient of determination (R2) of
the property predictions versus observations were aver-
aged across all k folds to evaluate the MLmodels. When
a validation set was required for early stopping (e.g. for
Gradient boosting), the training set was split so that
80% of the original training set was retained for training
and 20% was used for validation.

2.4.2. ML algorithms
Three supervised ML algorithms were applied as
a regression tool to our dataset: Elastic Net, Random
forest and Gradient boosting [23]. Elastic Net is
a linear regression model, whereas Random forest
and Gradient boosting are ensemble learning methods
that make predictions by combining the outputs from
individual regression trees. The Random forest builds
each regression tree independently and merges them
to obtain accurate and stable predictions, and
Gradient boosting builds regression trees sequentially
to minimize residual errors from the previous trees.
XGboost in Scikit-learn library was used to train
Gradient boosting model [23]. During Gradient boost-
ing training, early stoppage was applied to minimize
the overfit on the training set [26]. The accuracy of
an ML model was accessed through their RMSE (a
lower value is better), MAE (a lower value is better)
and R2 (a value closer to one is better) on the predic-
tions versus observations via a k-fold cross-validation.

2.4.3. ML model and active learning
The best ML model that was chosen for its accuracy to
predict the σad was trained on the initial dataset of ns = 32
samples. The model predicted the σad of all (256–32)
possible experimental conditions (see Table 1) from the
initial dataset. The predicted σad were ranked in descend-
ing order. The top-five ranked experimental conditions
were selected as proposals for the next measurements to

Figure 2. Schematic illustration of adhesive joint specimen for single-lap shear test.

Table 1. Summary of variable parameters for adhesive formu-
lation used at the active learning stage. Variable parameters
include the molecular weight of the epoxy resin MWE (g/mol),
the molecular weight of the curing agent MWC (g/mol), the
amine-to-epoxide ratio r and the curing temperature Tcure (°C).

Variable parameter

No MWE (g/mol) MWC (g/mol) r Tcure (°C)

1 370 230 0.75 90
2 1650 400 1 130
3 2900 2000 1.25 170
4 3800 4000 1.5 210
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be performed in the laboratory to increase the σad. These
new measurements were added to the initial dataset of
now ns = (32 + 5) samples. Then, the ML model for σad
prediction was trained again on this improved dataset.
The ML model improved its σad prediction with addi-
tional data, especially for a range of high σad, and pro-
posed again the experimental conditions to follow for the
next measurements. This type of iterative supervised
learning, or so-called active learning, was repeated cycle
after cycle until a preliminary goal of a sufficiently high
accuracy of the ML model was reached. In this study,
active learning was stopped if the prediction error was
comparable to the experimental error of the σad that was
measured by a single-lap shear test. The final ML model
was kept fixed and used as a forward model for
a subsequent Bayesian optimization. The available
experimental data at this stage of active learning were
fed to theBayesian optimization as initial data points. The
flowchart of the active learning method is shown in
Figure 3. Compared to conventional ML approaches,
we use an initial experimental dataset that we built and
controlled by design of experiments techniques. This
technique would generate a highly uniform set of sample
points (Figure S1). In addition, all of the sample prepara-
tion and measurements is carried out under the same
experimental environment resulting in accurate and con-
sistent data.

2.4.4. Bayesian optimization
A Bayesian optimization [27] was used to search for the
highest σad by refining the variable conditions from
Table 1 once the coarse optimization through active
learning had been terminated. The Expected
Improvement (EI) was used as an acquisition function
to propose new experimental conditions tomaximize the
σad. In this step, two experimental conditions were
refined: r and Tcure. The r could vary from 0.75 to 1.50
with an increment of 0.01, and the Tcure could vary from
90 to 210°C by an increment of 1°C. TheMWE andMWC

were kept as four possible discrete values because these
are difficult to control precisely. Thus, the proposed
experimental conditions from the Bayesian optimization

were ranked in descending order with respect to the
predicted σad. A series of experiments was carried out
starting from rank 1 until a new highest σad was observed.

3. Results and discussions

3.1. Experimental results from the initial dataset

Experimental measurements of σad that compose our
initial curated dataset are reported in Table S2 of the
supplemental materials. Figure 4 shows the distribu-
tion of σad experimental values. σad was distributed
from 0.0 MPa (no bond strength) to 31.9 MPa with an
average at 10 ± 9 MPa.

3.2. ML model

3.2.1. Assessment and selection of an σad
prediction model
Gradient boosting, Random forest and Elastic Net
performance were checked through a 32-fold cross-
validation. The comparison of predicted against

Figure 3. Flowchart of our proposed approach for modelling and optimization. Note that ns indicates the dataset size and
i indicates the number of cycles.

Figure 4. Distribution of adhesive joint strength σad (MPa)
from the initial dataset of size ns = 32 samples.
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measured σad for each algorithm is shown in Figure 5.
A dashed straight line indicates an exact match
between the predicted and measured values. The
Random forest and Gradient boosting algorithms
could capture non-linear relationships among the
variable parameters that cannot be accessed via
a linear regressive model, such as Elastic Net. Their
indicated RMSE and MAE in Figure 5 were averaged
over the 32 folds, and the R2 was calculated to evaluate
their prediction accuracy. A comparison of the accu-
racy for each algorithm is shown in Figure 5 (top-
right). The Elastic Net model showed the lowest accu-
racy of R2, RMSE and MAE, and therefore, was dis-
carded. The Gradient boosting model showed
a slightly better accuracy than the Random forest
model in terms of a higher R2 value, and lower
RMSE and MAE values. Hence, the Gradient boosting
algorithm was selected to predict the σad in further
steps.

3.2.2. Active learning and ML model performance
In Section 3.2.1, the Gradient boosting model was
selected to predict the σad based ondifferent experimental
conditions. The σad of all remaining (256–32) possible
experimental conditions were predicted and ranked in
descending order. The top-5 experimental conditions
with the highest σad were proposed for measurements.
The new measurements were re-used in the Gradient
boosting model to improve the accuracy. This process
from the prediction phase to the re-injection phase sum-
marizes one cycle of the active learning pipeline. Table 2
lists the top-five proposed experiments for each three
cycles of active learningwith the corresponding predicted
and measured σad. The measured σad in Table 2 that are
above ~20 MPa show that the Gradient boosting model
allows us to classify experimental conditions with
a potentially high outcome compared with the others.
These additional data of high strength adhesives are very
beneficial to further maximization with Bayesian

Figure 5. Distribution of predicted versus measured adhesive joint strength σad (MPa) from successive test sets used in the 32-fold
cross-validation using different ML algorithms: (a) Gradient boosting, (b) Random forest and (c) Elastic Net. A dashed straight line
indicates equal measured and predicted σad. Hyperparameters used for these runs are shown in Table S4 of the Supplemental
material.
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Table 2. Proposed experimental conditions during the active learning stage via Gradient boosting with related experimental
results. Predicted adhesive joint strength σad (MPa) was calculated by averaging the predictions over the 32 folds via cross-
validation. Hyperparameters used for these runs are shown in Table S4 of the Supplemental material.

Proposed experimental condition

Cycle Rank MWE (g/mol) MWC (g/mol) r Tcure (°C) Predicted σad (MPa) Measured σad (MPa)

Initial dataset
(ns = 32 samples)

1 2900 400 1.00 210 25.6 ± 0.9 24.0 ± 1.1
2 3800 400 1.00 210 25.5 ± 1.4 21.2 ± 1.2
3 370 400 1.00 210 25.4 ± 1.2 29.0 ± 0.1
4 1650 400 1.00 170 25.4 ± 1.2 22.4 ± 1.7
5 1650 400 1.00 210 25.4 ± 1.2 27.3 ± 1.6

1
(ns = 37 samples)

1 370 400 1.25 210 25.4 ± 1.1 27.8 ± 0.5
2 370 400 1.25 170 25.3 ± 1.1 28.3 ± 0.9
3 370 400 1.50 210 25.1 ± 1.9 23.1 ± 0.4
4 370 400 1.50 170 25.0 ± 1.9 22.4 ± 1.8
5 1650 400 1.25 210 24.9 ± 0.5 24.6 ± 0.0

2
(ns = 42 samples)

1 2900 400 1.00 170 23.9 ± 0.4 20.5 ± 3.5
2 370 230 1.00 210 23.7 ± 1.1 24.6 ± 2.0
3 370 230 1.00 170 23.7 ± 1.1 27.9 ± 0.2
4 1650 400 1.25 170 23.5 ± 1.4 23.5 ± 1.0
5 2900 400 1.25 210 23.4 ± 1.1 25.7 ± 0.9

Figure 6. Correlation scatter plots (test data) of predicted and measured adhesive joint strength σad (MPa) using different dataset
sizes ns (samples): (a) initial dataset, (b) cycle 1, (c) cycle 2 and (d) cycle 3. Grey and orange dots indicate data from existing and
new measurements, respectively, at cycle i. All proposed experimental conditions are summarized in Table 2. Hyperparameters
used for these runs are shown in Table S4 of the Supplemental material.
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optimization. Without this strategy, the use of Bayesian
optimization on the initial dataset with the model in
Figure 6(a) would outcome less relevant proposals and
wouldn’t be beneficial compared to a simple random
sampling. In addition, 90% of proposed experiments
require a MWC of ~400 g/mol, a high Tcure of 170 and
210°C, and an excess of amine (r > 1), when theMWE can
evolve widely across its specific range (see Table 1).
Therefore, a high σad can be achieved regardless of the
MWE. However, it is premature to make any further
conclusion about optimal adhesive preparations before
the r and Tcure parameters are relaxed in Section 3.3.

To show the improvement in accuracy of the
Gradient boosting model along the cycles of active
learning, Figure 6 presents scatter plots of the predicted
versus measured σad from the initial dataset to the last
cycle. Grey and orange dots indicate existing and new
measurements, respectively, at each cycle. As expected,
an increase in the dataset size improves the correspon-
dence between the predicted and measured σad as sum-
marized in Figure 7 for the corresponding R2, RMSE
and MAE for the predictions of the σad at each cycle
beginning with the initial dataset. The R2 increases, and
the RMSE andMAEdecrease gradually with an increase
in ns. For a dataset of 47 samples, the Gradient boosting
model reaches an R2, RMSE and MAE of 0.85, 4.0 MPa
and 3.0 MPa, respectively. An improvement of 25%,
~26% and ~19%, respectively, was achieved compared
with the Gradient boosting model that had trained only
on the initial dataset. At cycle three of this active learn-
ing pipeline, the prediction performance of theGradient
boostingmodel became comparable with the maximum
standard deviation from experiments (3.5 MPa).
Therefore, the active learning procedure was stopped
at this stage and the Gradient boosting model was kept
fixed based on existing data.

3.2.3. Bayesian optimization
At the Bayesian optimization stage (see Section 2.4.4),
theMWE andMWCwere kept fixed at the four different
values used in Table 1, whereas the r and Tcure were
varied in steps of 0.01 and 1°C, respectively. The sug-
gested experimental conditions with the highest
expected improvement from Bayesian optimization
were selected, and a series of experiments was con-
ducted starting from ranking number 1 (Table 3). The
newhighest σad of 35.8MPawas observed. The σad value
was considered as a very high σad compared with pre-
vious studies on epoxy-aluminium joints, which
reported a typical σad range from ~10 MPa up to
25 MPa [11,28]. Furthermore, this σad value was com-
parable to the commercial epoxy adhesives like
Huntsman Araldite 2000+ (26 MPa) and 3M Scotch-
Weld DP420 (31 MPa) [29,30], characterized by single-
lap shear test. For this sample, the 50-kN tensile
machinewas used tomeasure the σad because the sample
did not break under a 10-kN applied force, i.e. the failure
stress of the adhesive joint exceeded the maximum
capacity of a 10-kN tensile machine. The suggested
experimental conditions from Bayesian optimization
showed that a low MWE and a high Tcure were
a promising condition to reach a high σad. The MWC

and r should be in themiddle of their defined range (see
Table 1). The σad improved for the sample that was
prepared with a slight excess of epoxide because other
conditions (MWE, MWC and Tcure) in the samples
shown in Table 3 were only slightly different. This
large improvement in σad indicates the suitable balance
between strength and flexibility of adhesives [31].
Because excess epoxide (lower r than the stoichiometric
ratio) leads to a higher tensile strength but a lower
flexibility of adhesives [14], an optimum combination
of high strength and good flexibility would be achieved
by adjusting the r precisely through Bayesian
optimization.

In summary, Figure 8 illustrates the distribution of
σad from the initial dataset alone (grey), after three
active learning cycles (blue), and after a Bayesian opti-
mization (red). The values of σad from the initial dataset
were spread randomly from 0 to 31.9 MPa. In contrast,
all samples that followed an active learning cycle exhib-
ited a high value of σad (> 20 MPa), and one sample
from the Bayesian optimization dataset showed an

Figure 7. Comparison of the accuracy of the Gradient boosting
model to predict the adhesive joint strength σad (MPa) for
different dataset sizes ns of the dataset.

Table 3. Proposed preparations of an epoxy adhesive at
Bayesian optimization stage with the related experimental
adhesive joint strength σad (MPa).

Suggested experimental conditions

Rank MWE (g/mol)
MWC

(g/mol) r
Tcure
(°C)

Predicted
σad (MPa)

Measured
σad (MPa)

1 370 400 1.11 199 26.9 28.0 ± 0.7
2 370 400 1.24 194 26.9 27.4 ± 1.2
3 370 400 1.30 191 26.9 18.8 ± 1.4
4 370 400 0.89 209 26.9 35.8 ± 1.1
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exceptionally high σad. The spread in measurements
from the Bayesian optimization was wider than that
from the active learning cycles. A Bayesian optimiza-
tion balances the exploitation (surrogate model predicts
a high objective) and exploration (sampling of regions
where the prediction uncertainty is high) of the epoxy
adhesive preparation parameters space, where our
active learning pipeline based on the ML model pre-
dictions only exploits the parameters. These results
demonstrate the potential of our method for the design
and development of new functional materials when the
initial number of samples is reduced compared with the
number of combinations of free parameters involved.

3.3. Interpretation of ML model for adhesive
design

We explore the influence of epoxy network structure on
σad of the joints through the developed ML model
(Figure 9). The epoxy network structure was altered
by varying the MWE, MWC, r and Tcure used to cross-
link the adhesives. The predicted σad were calculated by
averaging the predictions over the 47 folds of cross-
validation and their standard deviations are shown.
The plots show a step change in the value of predicted
σad. This step change corresponds to the decision-tree
formation process in Gradient boosting within limited
discrete input values. The experimental σad values were
plotted with their standard deviations. Although the
bulk properties of various epoxy network structures
have been studied extensively and reported previously
[11], no comprehensive study focuses on their adhesive
joint property, which is related more closely to the
practical application of epoxy resin.

As shown in Figure 9(a), the σad decreased slightly
(i.e. less than 5 MPa) with an increase in MWE. This

slight decrease of σad for a high-MW epoxy resin most
likely originates from an increased epoxy-resin viscos-
ity. Because a higher MWE possesses a higher viscosity,
it is observed in the experiment that an adhesive that is
prepared from a solid-type epoxy resin (MWE = 1650,
2900 and 3800 g/mol) cannot spread well on the sub-
strates, which results in a lowered adhesion strength
between the adhesive and the substrates.

In the case of a curing agent, the σad first increases
with an increasing MWC, reaches a maximum of
~26MPa at ~380–1200 g/mol, and then decreases shar-
ply to less than 5 MPa (Figure 9(b)). The increase in σad
could be attributed to an enhanced flexibility within the
crosslinked epoxy-amine network when the amine
chain length is increased [13]. However, at a higher
MWC (> 1200 g/mol), the adhesive is too flexible to
resist a high applied force, which results in a low σad. As
observed in the experiment, the adhesives that were
prepared with a MWC above 2000 g/mol are extremely
soft, which implies a much lower adhesive elastic mod-
ulus and tensile strength. This result is consistent with
previous studies in which the elastic modulus of cured
epoxies was reduced significantly from 2 GPa to
1.9 MPa when the molecular weight of Jeffamine was
increased from 400 to 2000 g/mol [32,33].

For the amine-to-epoxide ratio effect, σad increases
first then it reaches a maximum, and then decreases
slightly with an increase in r (Figure 9(c)). The high σad
from ~0.87 to 1.37 is attributed to the appropriate bal-
ance between flexibility and strength of adhesives [14,34].

The σad increased gradually as Tcure increased and
appears to be almost constant for a Tcure of 150–210°C
(Figure 9(d)). Fully cured adhesives were obtained at
a Tcure of 150–210°C because there is no significant
difference in σad and because of the physical appearance
in this range. The low σad region at a lowTcure between 90
and 150°C may indicate incomplete curing because the
incomplete network structures of a partially cured adhe-
sive result in a remarkably lower elastic modulus [35].
The experimental evidence shows that an adhesive cured
at 90°C is relatively soft and/or the resin component
remains liquid (uncured) compared with that cured at
170–210°C.

4. Conclusions

The design of experimental techniques combined with
an active learning pipeline and Bayesian optimization
was proposed to predict and optimize the adhesive
joint strength (σad) of an epoxy-amine adhesive com-
prised of bisphenol A-based epoxy resin and amine-
terminated poly(propylene glycol) curing agent with var-
ious molecular weights (MWE, MWC), mixing ratios (r)
and curing temperatures (Tcure). From an initial dataset
of only 32 measured σad with related epoxy-amine mix-
ture preparation parameters {MWE, MWC, r, Tcure}, our
active leaning pipeline was able to propose preferred

Figure 8. Distribution of adhesive joint strength σad (MPa)
measurements from the initial dataset alone (grey), after
active learning cycles (blue) and after Bayesian optimization
(red). Lines are used to guide the eye only.
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experimental conditions to build a predictive Gradient
boosting model of σad with an experimental-like error
level, and to maximize the likelihood to design epoxy-
amine adhesives with a high σad, along three cycles of
active learning. An extremely high σad of 35.8 ± 1.1 MPa
was achieved using the experimental conditions that
were refined by Bayesian optimization. Because the pre-
diction model was built using a very small dataset
(e.g. < 50 samples), and the efficiency of prediction was
reasonably high (e.g. R2 > 0.8), our proposed approach is
foreseen to reduce materials design and development
time and cost, especially for which experimental datasets
are rare.

Our predictivemodel also provides a physical under-
standing of adhesive systems over a wide range of
parameters for preparation. A quantitative analysis
indicates that high-strength adhesives require a MWC

of ~380–1200 g/mol, an r of ~0.87–1.37 and a Tcure

above 150°C. However, a MWE of 370–3800 g/mol has
a slight effect on σad. Qualitatively, we emphasize that:
(i) a balance between flexibility and strength of adhe-
sives (by adjusting MWC, r) influences σad significantly,
(ii) a complete curing (high Tcure) is compulsory to
obtain a high σad and (iii) an increase in epoxy viscosity
(MWE) degrades the adhesive–substrate adhesion.

Future work on this topic should target multiple-
objective optimization of an adhesive (e.g. adhesive
joint strength, glass transition temperature and che-
mical resistance). Other molecular weights or epoxy
resin and curing agent types can be added to the
dataset to increase the design freedom of advanced
high-strength adhesives. From an experimental per-
spective, structural and mechanical characterizations
(e.g. crosslink density, dynamic mechanical analysis
and fracture morphology) of the extremely high-
strength adhesive achieved in this study are essential

Figure 9. Predicted adhesive joint strength σad (MPa) as a function of (a) molecular weight of epoxy resin MWE (g/mol), (b)
molecular weight of epoxy resin MWC (g/mol), (c) amine-to-epoxide ratio r and (d) curing temperature Tcure (°C). The predicted σad
was calculated by averaging the predictions over the 47 folds of cross-validation. The blue line consisted of the predicted values of
σad (blue). Triangles represent experimental results (red).
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and will be conducted to elucidate the source of the
exceptional properties, to guide experimentalists in
the design of an epoxy-amine system for adhesive-
bonding applications.
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