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� We propose an inverse design
method for auxetic metamaterials
using deep learning.

� We designed novel 2D auxetic
metamaterials based on Voronoi
tessellation for the training dataset.

� The trained neural network can
generate 2D auxetic metamaterials
with user-desired Young’s moduli
and Poisson’s ratios.

� The proposed method can easily be
extended to the inverse design of
other architected materials.
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As typical mechanical metamaterials with negative Poisson’s ratios, auxetic metamaterials exhibit coun-
terintuitive auxetic behaviors that are highly dependent on their geometric arrangements. The realization
of the geometric arrangement required to achieve a negative Poisson’s ratio relies considerably on the
experience of designers and trial-and-error approaches. This report proposes an inverse design method
for auxetic metamaterials using deep learning, in which a batch of auxetic metamaterials with a user-
defined Poisson’s ratio and Young’s modulus can be generated by a conditional generative adversarial
network without prior knowledge. The network was trained based on supervised learning using a large
number of geometrical patterns generated by Voronoi tessellation. The performance of the network was
demonstrated by verifying the mechanical properties of the generated patterns using finite element
method simulations and uniaxial compression tests. The successful realization of user-desired properties
can potentially accelerate the inverse design and development of mechanical metamaterials.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Auxetic metamaterials, which are mechanical metamaterials
with negative Poisson’s ratios, exhibit counterintuitive deforma-
tion behavior [1–7]. Under uniaxial compressive loading, auxetic
metamaterials contract in the orthogonal directions rather than
expanding; this behavior is in contrast to that of natural and syn-
thetic materials, which have positive Poisson’s ratios. Further,
under bending loading, an auxetic metamaterial plate deforms into
a convex shape, in contrast to the saddle shape usually seen for
common materials. Compared with conventional materials, aux-
etic metamaterials have higher shear resistance, fracture resis-
tance, indentation resistance, impact resistance, and energy
absorption. Such distinctive behaviors make auxetic metamaterials
promising candidates for developing impact absorbers [8,9], strain
sensors [10,11], and actuators [12–14], as well as for applications
in biomedicine [15,16] and electrochemical energy storage and
conversion [17,18]. In addition, recent advances in additive manu-
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facturing technologies have opened new avenues for the design
and fabrication of such complicated structures [19,20].

Auxetic behavior can be quantified by the Poisson’s ratio
m ¼ �et=el, where et and el are the transverse and longitudinal com-
ponents of engineering strain, respectively, for a deformedmaterial
under a uniaxial load. For isotropic linear elastic materials, m must
satisfy one of the following conditions [1]: m 2 �1; 0:5½ � for three-
dimensional (3D) materials and m 2 �1;1½ � for two-dimensional
(2D) materials. Negative Poisson’s ratio materials were founded
in the 1980s [22–25]; since then, considerable efforts have been
devoted designing, modeling, and analyzing auxetic metamaterials
[26–29]. Despite such intensive efforts to design new auxetic
metamaterials, it remains challenging to design flexible auxetic
metamaterials with extreme properties, such as materials that
can maintain negative Poisson’s ratios consistently during large
deformations [21,39,40,32]. For example, some delicately designed
structures have positive Poisson’s ratios under small deformations
and only exhibit negative Poisson’s ratios during further compres-
sion [39,40,32]. This is because of the limitations of conventional
design methods. Forward design is the mainstream method for
designing auxetic metamaterials and includes approaches such as
bioinspired methods [30,31], mathematical control [32–35], topol-
ogy optimization [36–38], and Boolean and lofting operations of
simple geometries [39–43]. The forward design approach follows
a general process: first, a structure is created, and its mechanical
properties are then investigated by finite element method (FEM)
simulations or mechanical testing (Fig. 1). The mechanical proper-
ties of the designed materials are known only after time-
consuming simulations or experiments. In addition, because the
properties of auxetic metamaterials are determined by the geome-
try and assembly of periodic unit cells, the traditional methods are
highly dependent on the prior knowledge of experienced design-
ers, resulting in a limited number of design spaces. Further, struc-
tural optimization techniques can be employed to achieve extreme
properties such as negative Poisson’s ratios even at finite strain
[27,38]; however, nonlinear optimization remains challenging
from the perspectives of robustness and efficiency.

Recent advances in deep learning have facilitated the inverse
design of new materials using various artificial neural networks
[44–53]. However, to the best of the authors’ knowledge, deep
learning has not yet been successfully harnessed to create novel
auxetic metamaterials and rather has been used only to predict
the mechanical behavior of specific auxetic configurations [48].
One important reason for this situation is that the properties of
an auxetic metamaterial are almost completely determined by
the geometry and assembly of periodic unit cells. The realization
of a negative Poisson’s ratio requires a delicate arrangement and
Fig. 1. Comparison of the conventiona
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design of the unit cells; therefore, it is very difficult to build a large
dataset consisting of thousands of geometries of auxetic metama-
terials and their corresponding properties. For example, success
has been achieved in previous studies only in the property predic-
tion and pattern design of simple square-shaped cellular materials
[44] or in the realization of isotropic elastic stiffness based on ran-
domly generated architectures [47].

In this study, we devised a deep learning framework that can
successfully generate auxetic metamaterials with assigned Young’s
moduli and Poisson’s ratios. First, we created a large dataset com-
posed of tens of thousands of geometric patterns and their corre-
sponding mechanical properties. The patterns were derived from
Voronoi tessellation, and their properties were calculated using a
homogenization algorithm. The dataset was then used to train a
conditional generative adversarial network (CGAN). Unlike a com-
mon generative adversarial network (GAN), which consists of a
generator and discriminator, the CGAN uses a linear regression
module (solver) to predict the properties of patterns from the gen-
erator. The discriminator was trained to push the generator to pro-
duce realistic patterns, and the solver was trained to push the
generator to yield patterns with user-defined properties. After
the CGAN had been well trained, it could rapidly generate new pat-
terns with user-defined properties and could generate auxetic
metamaterials with constantly negative Poisson’s ratios during
large deformations. Finally, the auxetic behaviors of the generated
metamaterials were verified by FEM simulations and uniaxial com-
pression tests.
2. Methods

2.1. Voronoi tessellation algorithm

As illustrated in Fig. 2, two-dimensional (2D) topology patterns
were created using Voronoi tessellation, which is a robust method
that is capable of creating various porous materials [54–59]. To
ensure the periodicity of these 2D patterns, periodic boundary con-
ditions were applied in the Voronoi tessellation. Briefly, a seed con-
sisting of 64 coordinate points was initially created according to
Mitchell’s best candidate algorithm [60]. A 2D Voronoi diagram
was created based on the seed. To mimic the nature of actual aux-
etic foams, which have both convex and concave cells [61], the 2D
Voronoi diagram was modified by merging two adjacent polygons.
Finally, a new pattern was formed after smoothing the edges of the
polygons using Chaikin’s algorithm because smooth surfaces have
more homogeneous stress responses than sharp surfaces [62,63].
Note that the relative density of a pattern can be tuned easily by
l design method and our method.



Fig. 2. Process of structure generation using Voronoi tessellation.
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changing the width of the edges. Here, the width was fixed for sim-
plicity. The relative density of the patterns was approximately
0.154. By repeating this process, an infinite number of different
patterns can be created to facilitate big-data-driven material
design.

2.2. Homogenization algorithm

The elastic moduli (Young’s modulus and Poisson’s ratio) were
calculated according to the theory of homogenization, which has
been used extensively to probe the equivalent linear elasticity of
periodic composites [64–66]. According to the theory of homoge-

nization, the effective elasticity tensor eCijkl of a periodic pattern
can be computed as:

eCijkl ¼ 1
Vj j
Z
V
Cpqrs e0 ijð Þ

pq � e ijð Þ
pq

� �
e0 klð Þ
rs � e klð Þ

rs

� �
dV ð1Þ

where Vj j is the area of a square domain, Cpqrs is the locally varying

stiffness tensor, e0 ijð Þ
pq represents the prescribed macroscopic strain

fields (three strain fields in the case of two dimensions: horizontal,

vertical, and shear strains), and e ijð Þ
pq represents the locally varying

strain fields and is defined as:

e ijð Þ
pq ¼ epq vij

� � ¼ 1
2

vij
p;q þ vij

q;p

� �
ð2Þ

The locally varying strain fields are based on the displacement fields
vij, which can be determined using a prescribed macroscopic strain:Z
V
Cijpqeij vð Þeij vkl

� �
dV ¼

Z
V
Cijpqeij vð Þe0 klð Þ

pq dV ;8v 2 V ð3Þ

where v denotes the virtual displacement field. The numerical
homogenization procedure is discussed in more detail in the litera-

ture [64–66]. After obtaining the effective elasticity tensor eCijkl, the
effective elastic moduli (i.e., Young’s modulus, Poisson’s ratio, shear
modulus, and bulk modulus) can be calculated.

In this work, each pattern was first converted into a 256� 256
element matrix consisting of 0 and 1, where 0 represents void
regions and 1 represents solid regions. Subsequently, trial strain
fields were applied to the element matrix to determine the reac-
tion forces and stored elastic energy. Then, a homogenized elastic-
ity tensor was obtained after the homogenization calculation.
Finally, the effective elastic moduli of the patterns were calculated
according to the elasticity tensor. The material model used in the
homogenization was a linear elastic material with a Young’s mod-
ulus of 0.6615 MPa and a Poisson’s ratio of 0.49; these values were
chosen to fit the equivalent elastic moduli of an incompressible
neo-Hookean solid under a small deformation.

2.3. Dataset preparation

After topology creation and elastic modulus calculation, a large
dataset was obtained, in which each datapoint consisted of a pat-
3

tern and its corresponding labels (Poisson’s ratio and Young’s mod-
ulus). The training dataset was composed of 100,000 datapoints.
Fig. 3(a) shows the 100,000 randomly created geometric patterns
in the property space with the axes representing the Poisson’s ratio
(m) and Young’s modulus (E). The randomly created patterns scat-
tered in the material property space form a nearly triangular shape,
with 2.1 kPa < E < 13.7 kPa and �0:28 < m < 0:38. We refer to the
triangular region as the available E–m space, in which random
labels were sampled to train the neural network. Fig. 3(b) shows
the distributions of the Poisson’s ratios of these randomly created
patterns. The distributions indicate that less than 3% of the ran-
domly created patterns have negative Poisson’s ratios.

2.4. Generative deep learning model

We devised a CGAN to train the created dataset. A GAN, which
consists of two models (a generator and discriminator), is a type of
deep learning network for data generation [67–69]. The generator
and discriminator are trained simultaneously by an adversarial
process, in which the generator learns to produce data with char-
acteristics similar to those of the training data, whereas the dis-
criminator learns to distinguish between real data and the
generated data. A CGAN is a type of GAN in which conditional gen-
eration is realized by taking advantage of labels during the training
process. However, with regard to precise data generation, the con-
ventional CGAN can hardly provide good guidance for training the
generator because the discriminator always suffers from overfit-
ting [70]. We addressed this problem by employing an indepen-
dent module (solver). The solver is a linear regression network
that acts as a linear elasticity solver to predict the Young’s modulus
and Poisson’s ratio of a given pattern (obtained from the dataset or
generated by the CGAN). Fig. 4(a) illustrates the architecture of the
proposed CGAN. A three-player game was conducted in which the
generator deceived the discriminator in terms of geometry and
simultaneously deceived the solver in terms of elastic moduli. After
the CGAN had been well trained using 100,000 datapoints, it could
generate a batch of patterns for a given label (Young’s modulus and
Poisson’s ratio). More details on the CGAN are discussed in Appen-
dix A.

2.5. Uniaxial compression tests

The auxetic behaviors of the generated metamaterials were first
investigated using a set of 3D-printed samples in uniaxial com-
pression tests. Each sample consisted of 3 � 3 unit cells and had
overall dimensions of 120 mm � 120 mm � 15 mm. The unit cell
number and size are sufficient to represent a periodic porous mate-
rial [47]. To ensure that the specimens underwent large deforma-
tion without cracks, they were fabricated using an elastic
photopolymer resin (Elastic 50A resin, Formlabs, USA) by employ-
ing a 3D printer (Form 3, Formlabs, USA). A subtle surface finish
was achieved without the use of support structures. The printing
parameters were as follows: a layer thickness of 0.05 mm and an



Fig. 3. Dataset for neural network training. (a) Young’s moduli and Poisson’s ratios of 100,000 randomly created patterns from Voronoi tessellation. (b) Distributions of
Poisson’s ratios for randomly created patterns and for CGAN-outputted patterns with an input condition of m ¼ �0:28.

Fig. 4. Inverse design using CGAN. (a) CGAN architecture. (b) CGAN performance for different training datapoints. (c) Comparison between user-input and CGAN-output real
elastic moduli.
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operation temperature of 33 �C. All the specimens were fully cured
at 60 �C for 20 min after washing with isopropanol. A typical 3D-
printed sample is shown in Fig. 5(a).

The mechanical properties of the 3D-printed specimens were
investigated by performing static compression tests using a motor-
ized test stand (EMX-500 N, IMADA, Japan). A constant displace-
ment rate of 10 mm/min was set during the tests, in which the
samples were uniaxially compressed between two plates. The
deformation process was captured using a high-speed camera,
and the stress–strain curves were plotted using the recorded
load–displacement data. The Hencky (logarithmic) strain compo-
nents of the longitudinal (compression) and transverse directions
were calculated using
Fig. 5. Example of an evaluated object: (a) The 3D printed-sample and (b) a finite
element meshing of an RVE.

4

�i ¼ ln 1þ �ui

Li

� �
¼ ln 1þ ei½ � for i 2 l; tf g; ð4Þ

where �ui is the average boundary displacement between the top
and bottom or the left and right of the red-marked interior unit cell,
and Li is the initial length of the interior unit cell. In this study,
Ll ¼ Lt = 40 mm. The average boundary displacements of the interior
unit cell were measured by post-processing the recorded movies.
Using the Hencky strain, Poisson’s ratio at finite strain was defined
as mlt ¼ ��t=�l.

The Young’s modulus El for the longitudinal (compression)
direction was calculated by linear fitting of the initial linear por-
tions of the stress–strain curves. Least-squares approach was used
to find the suitable value of El, in which the optimization problem
was defined as

min
XN
k¼1

F kð Þ

A
� e kð ÞEl

 !2
24 35; ð5Þ

where N is number of data, F is the applied load, and A is the initial
contact area between the sample and the measuring instrument. In
this study, the initial contact area was calculated as A ¼ 1;800 mm2

(120 mm � 15 mm).
In this study, compression tests were carried out on the struc-

ture in two directions, namely, x and y, as shown in Fig. 5(b); that
is, mxy; myx; Ex, and Ey were evaluated.



X. Zheng, Ta-Te Chen, X. Guo et al. Materials & Design 211 (2021) 110178
2.6. Finite element method simulations

A deformation problem with a periodic microstructure, i.e., a
representative volume element (RVE), was solved using a nonlin-
ear FEM to simulate the deformation state at finite strain
[31,71,72]. The displacement field w in an RVE is divided into the
uniform part �u and the periodic part ~u : w ¼ �uþ ~u. The uniform
displacement �u is described by the macroscopic displacement gra-
dient �H as �u ¼ �HY , where Y is the coordination system in the RVE.
The boundary value problem of an RVE is formulated as a self-
equilibrium problem for a periodic displacement field ~u:Z
XY

P : rY ~gdXY ¼ 0 8~g 2 Wperiodic; ð6Þ

where P is first Piola–Kirchhoff stress, ~g is the variation of the peri-
odic displacement ~u;XY is the volume of the overall RVE, and
Wperiodic is the real solution space of the periodic function.

Based on the periodicity of the displacement field, the differ-
ence in displacements at two points A and B, which satisfy the peri-
odicity on the corresponding surfaces of the RVE, is derived as
wA �wB ¼ �H YA � YBð Þ. The above node-based boundary condi-
tions are set on the finite element model of an RVE, and the dis-
placement field w is then controlled by the macroscopic
displacement gradient �H. Following the definition of an RVE, a
macroscopic variable can be calculated as the volume average of
the corresponding microscopic variable. Thus, the macroscopic
stress �P can be evaluated as

�P :¼ 1
XY

Z
XY

PdXY : ð7Þ

Based on the above equations, the mechanical properties of the pro-
posed patterns were further validated using an FEM simulation
platform (COMSOL Multiphysics Ver. 5.4, COMSOL, Sweden). A 2D
plane strain model was utilized under periodic boundary condi-
tions. To mimic the properties of the 3D-printed material, the mate-
rial model in the simulations was defined as an incompressible neo-
Hookean model with a Young’s modulus of 0.6615 MPa that was fit-
ted from the compression tests. All the model geometries were
meshed using approximately 2:5� 105 second-order triangular
solid elements. An example of meshing is shown in Fig. 5(b). A con-
tact condition based on an augmented Lagrangian method was set
in the finite element model. For the large deformation, a parametric
sweep of the longitudinal displacement was used with a stop con-
dition of el ¼ 0:2. The Poisson’s ratios and Young’s moduli in the
simulation results were calculated using the same method that
was employed to obtain the experimental results.

3. Results and discussion

3.1. Conditional generative adversarial network

We tested the performance of our CGAN model during each
epoch by generating 1024 patterns with labels that were randomly
sampled from the available E–m space. The performance was eval-
uated in terms of the mean squared error (MSE) of the sum of E and
m:

MSE ¼ 1
N

XN
i¼1

E ið Þ � bE ið Þ
� �2

þ m ið Þ � m̂ ið Þ� �2� 	
; ð8Þ

where N ¼ 1024 is the number of labels sampled from the available

E–m space, E is the normalized input Young’s modulus, bE is the nor-
malized output Young’s modulus, m is the normalized input Pois-
son’s ratio, and m̂ is the normalized output Poisson’s ratio. To
facilitate deep learning, both the Young’s modulus and Poisson’s
5

ratio were normalized to the range from 0 to 1 based on the maxi-
mum and minimum values of the E–m space shown in Fig. 3(a). A
smaller MSE indicates better performance. Fig. 4(b) shows the
change in the MSE during the training epoch. Two convergence
stages are observed in the MSE curve. The first one is before epoch
5, where the solver learns very rapidly to generate patterns similar
to the real patterns. The next stage is 5 < epoch< 50, where the sol-
ver learns relatively slowly to generate patterns with the corre-
sponding input elastic moduli. Initially, the MSE decreases
rapidly; then, it decreases gradually, finally reaching a minimum
of approximately 0.014 after epoch 60. The low MSE indicates that
our CGAN is capable of generating patterns with a user-defined
Young’s modulus and Poisson’s ratio. In addition, the line plots for
the loss (see Appendix A for the definition) of the generator and dis-
criminator are shown in Fig. 4(b). The plots represent typical loss–
epoch graphs of a stable GAN training process: the losses of the gen-
erator and discriminator begin erratically and gradually converge to
a stable equilibrium after epoch 20. This finding further demon-
strates the stability of our CGAN.
3.2. Inverse design of auxetic metamaterials

After the CGAN had been well trained using appropriate param-
eters, it could invert the design of auxetic metamaterials: a label
(Young’s modulus and Poisson’s ratio) was input, and the CGAN
generated a batch of geometrical patterns with the corresponding
Young’s modulus and Poisson’s ratio. The performance of the
trained CGAN was evaluated by comparing each input value and
its output values (i.e., the Young’s modulus and Poisson’s ratio of
the generated pattern). Fig. 4(c) compares 1024 samples with input
labels sampled from the available E–m space. The coordinates of
each point correspond to the input Young’s modulus or Poisson’s
ratio (X coordinate) and the output Young’s modulus or Poisson’s
ratio (Y coordinate). A position closer to the bisection line
(Y ¼ X) represents better performance of the CGAN. The narrow
bandwidth of the scatter distributions indicates the good perfor-
mance of the trained CGAN, demonstrating that the CGAN can gen-
erate a batch of geometries with user-desired Young’s moduli and
Poisson’s ratios. These results also show that the CGAN can effec-
tively perform extrapolation from the training data to provide a
controllable inverse design, in contrast to the random generation
obtained by Voronoi tessellation.

We further demonstrated that the trained CGAN facilitates the
inverse design of auxetic metamaterials with very low negative
Poisson’s ratios. Considering that the lower boundary of the Pois-
son’s ratio in the available E–m space had m ¼ �0:28 and E ¼ 3
kPa, we input the label with these values and the CGAN generated
a batch of auxetic metamaterials (Fig. 6). In this figure, the input
and output values are also compared below each pattern and show
good agreement. Fig. 3(b) compares the distribution of Poisson’s
ratios between the CGAN-generated patterns and randomly cre-
ated patterns. The comparison shows that it is easy to generate
auxetic metamaterials with very low negative Poisson’s ratios
using the CGAN, in contrast to the random generation method.
Althugh among the structures randomly generated with the Voro-
noi tessellation algorithm in Section 2.3, only 3% had a negative
Poisson’s ratio, the proposed approach can almost certainly gener-
ate the intended disordered structures having negative Poisson’s
ratios. More importantly, this inverse design method does not
require delicate arrangement of the shapes, distributions, and com-
binations of geometrical elements. This method is independent of
prior knowledge about the design of auxetic metamaterials. More
patterns generated by the CGAN with different elastic moduli are
shown in Figs. A3 and A4 in Appendix A.



Fig. 6. Auxetic metamaterials generated using the CGAN with input labels of E ¼ 3 kPa and m ¼ �0:28.
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3.3. Investigation of auxetic behavior

To probe the auxetic behavior of the generated metamaterials
under large deformation, we conducted a systematic analysis by
performing uniaxial compression tests and FEM simulations.
Fig. 7(a) shows a sequence of progressively deformed shapes of
the generated auxetic metamaterials under four different levels
of compressive engineering strain. The experimental and simula-
tion results show a consistent deformation tendency wherein the
metamaterial gradually contracts when compressed uniaxially
along with the shrinkage of its interior holes. The overall shrinkage
phenomenon proves that the metamaterial is an auxetic metama-
terial with a negative Poisson’s ratio. The progressively deformed
shapes of other patterns with Poisson’s ratios ranging from �0:2
to 0.3 are shown in Fig. A3; the patterns with a positive Poisson’s
ratio expand laterally when compressed uniaxially.

Fig. 7(b) presents a quantitative evaluation of Poisson’s ratios
under different compression strains. The transverse strains were
determined from the average transverse strains of the interior unit
cell to reduce the influence of the boundary conditions. The figure
shows that the calculated Poisson’s ratios monotonically decrease
with increasing strain (e 6 0:2). A more detailed Poisson’s ratio–
strain curve obtained from the simulation results was also com-
Fig. 7. Auxetic behavior of structures. (a) Progressively deformed configurations of FEM
strain curves and (c) stress–strain curves from FEM simulations and uniaxial compressi

6

pared with the curve obtained from the experimental results. Ini-
tially, the Poisson’s ratio decreases; then, it gradually increases
during compression because the empty space is insufficient, which
causes the ligaments to bend when they are in contact with each
other. Overall, the experimental and simulation results demon-
strate that the negative Poisson’s ratio can maintain a wide range
of compressive strain (e ¼ 0:2). Notably, the training dataset was
calculated by the homogenization algorithm at small strain. In this
case, a negative Poisson’s ratio can be attained in the small strain
region, as expected; however, it does not necessarily maintain this
ratio during a large deformation. It typically changes during defor-
mation, as shown in Fig. 7(b). The proposed approach can generate
a suitable structure if the training dataset is produced in consider-
ation of finite strain and the objective is set as maintaining a neg-
ative Poisson’s ration during a large deformation.

We also analyzed the stresses of the auxetic metamaterials dur-
ing deformation. As shown in Fig. 7(c), the stress–strain curves
exhibit good linearity. The lack of transformation from the linear
elastic region to the plateau region indicates that the auxetic
behavior of the designed metamaterials is a result not of buckling,
but rather of ligament bending. It is noteworthy that the designed
auxetic metamaterials are considerably different from typical
buckling-induced auxetic metamaterials, whose stress–strain
model and 3D-printed sample under uniaxial compressive load. (b) Poisson’s ratio–
on tests.
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curves have an additional plateau region between the linear elastic
and densification regions [31,41–43].

4. Conclusions

We developed a controllable inverse design method for auxetic
metamaterials using deep learning. The proposed deep learning
model, CGAN, was trained using 100,000 randomly created pat-
terns generated by Voronoi tessellation. The trained CGAN can
facilitate the mass generation of 2D auxetic metamaterials with
user-desired elastic moduli. The proposed method can be easily
extended to the inverse design of 3D auxetic metamaterials in
combination with Voronoi tessellation. In addition, this study
opens new avenues to harness deep learning in the realization of
user-desired properties for applications in which specific material
properties are required (e.g., actuator fabrication, sensor manufac-
turing, and catalysis). Finally, although this work was focused only
on 2D auxetic metamaterials with random structures, it is highly
recommended that inverse design of 3D auxetic metamaterials
be developed in future work, paving the way for further applica-
tions in which complicated 3D geometries are preferred.
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Appendix A. Details of conditional generative adversarial
network

The CGAN used in this study was composed of three neural net-
work structures: a generator, discriminator, and solver. The gener-
ator was trained to produce patterns of auxetic metamaterials
from latent variables (multivariate normal distribution) and user-
defined labels (Young’s modulus and Poisson’s ratio) and simulta-
neously aimed to deceive the discriminator and solver. The dis-
criminator was trained to distinguish between the patterns
produced by the generator and those from the real dataset. The sol-
ver was trained to predict the Young’s modulus and Poisson’s ratio
of a given pattern. The CGAN was optimized by a minimax game
using the following equations:
Table A.1
Network architecture of generator.

Description Kernel s

Concatenate (Z, L) -
Fully connected + Batch normalization + Reshape -
2D transposed convolution + Batch normalization + Leaky ReLU 4 � 4
2D transposed convolution + Batch normalization + Leaky ReLU 4 � 4
2D transposed convolution + Batch normalization + Leaky ReLU 4 � 4
2D transposed convolution + Batch normalization + Leaky ReLU 4 � 4
2D transposed convolution + Batch normalization + Leaky ReLU 4 � 4
2D transposed convolution 4 � 4
Tanh -
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ĥD ¼ argmin
hD

LD tD;D X; hDð Þð Þ þ LD uD;D G Z; L; hGð Þ; hDð Þð Þf g ðA:1Þ
ĥG ¼ argmax
hG

LD uD;D G Z; L; hGð Þ; hDð Þð Þ � aLS L; S G Z; L; hGð Þ; hSð Þð Þf g

ðA:2Þ
ĥS ¼ argmax
hS

LS L; S X; hSð Þð Þf g ðA:3Þ

where hD; hG, and hS are the sets of parameters of the discriminator,
generator, and solver, respectively. D;G, and S denote the discrimi-
nator, generator, and solver, respectively. X 2 Rn�p is the training
dataset (vectors of auxetic metamaterials), L 2 Rn�l are the labels
of the dataset X (i.e., Young’s moduli and Poisson’s ratios), and
Z 2 Rn�l are the latent variables from a multivariate normal distri-
bution during each iteration. LD is a loss function (binary cross-
entropy function) for the discriminator. tD and uD are target labels
and are generally set to 1 and 0, respectively. However, we applied
the label smoothing technique for the target labels [73]: tD was
replaced by a random number between 0.7 and 1.2, and uD was
replaced by a random number between 0 and 0.3. The moderating
weights, a, determined the extent to which the generator focused
on the training of the input labels and was set to be 0.1 in our study.

Deep learning calculations were performed using TensorFlow
[74]. An Adam optimizer with a learning rate of 0.0001 and b1 of
0.5 was used to train the model. The batch size for the training
was set to 32. The detailed network structures used in this study
are listed in Tables A.1,A.2,A.3. In short, the layers used included
a 2D convolutional layer, a 2D transposed convolutional layer, 2D
max pooling, a fully connected layer, batch normalization, and
dropout, and the activation functions used included Leaky ReLU
and tanh. Note that circular padding was used in the 2D convolu-
tional layer and 2D transposed convolutional layer to maintain
and identify the periodicity of the patterns. Examples of down-
and up-samplings with circular and zero paddings are shown in
Fig. A1. This figure demonstrates that compared to the commonly
used zero padding, circular padding can more effectively help the
output tensor retain its periodicity.

Because the solver is independent of the generator and discrim-
inator, we first trained the solver with supervised learning. The
process took approximately 23 h to train 200 epochs with
100,000 datapoints on a single NVIDIA RTX A6000 graphic card.
The solver is a type of linear regression model that can be used
to predict the Young’s modulus and Poisson’s ratio (elastic moduli)
of a given pattern. Fig. A2 shows the MSE between the predicted
and reference elastic moduli for different numbers of datasets. A
smaller MSE value represents a better performance of the trained
solver. Each dataset was split as follows: 80% was used as the train-
ing set and 20% was used as the testing set. To prevent the solver
from overfitting, early stopping was performed. As shown in
Fig. A2(a), the MSE reaches a very low value of 0.003 after 20
epochs when using 100,000 datapoints, and it becomes difficult
ize Resampling Input shape Output shape

- 128 + 2 130
- 130 4 � 4 � 512
Up 4 � 4 � 512 8 � 8 � 256
Up 8 � 8 � 256 16 � 16 � 128
Up 16 � 16 � 128 32� 32� 64
Up 32 � 32 � 64 64� 64� 32
Up 64 � 64 � 32 128� 128� 16
Up 128 � 128 �16 256� 256� 1
- 256 � 256 � 1 256 � 256 � 1



Table A.2
Network architecture of discriminator.

Description Kernel size Resampling Input shape Output shape

2D convolution + Leaky ReLU + Dropout 4� 4 Down 256� 256� 1 128� 128� 16
2D convolution + Leaky ReLU + Dropout 4� 4 Down 128� 128� 16 64� 64� 32
2D convolution + Leaky ReLU + Dropout 4� 4 Down 64� 64� 32 32� 32� 64
2D convolution + Leaky ReLU + Dropout 4� 4 Down 32� 32� 64 16� 16� 128
2D convolution + Leaky ReLU + Dropout 4� 4 Down 16� 16� 128 8� 8� 256
2D convolution + Leaky ReLU + Dropout 4� 4 Down 8� 8� 256 4� 4� 512
Flatten - - 4� 4� 512 8192
Fully connected - - 8192 1
Tanh - - 256� 256� 1 256� 256� 1

Table A.3
Network architecture of solver.

Description Kernel size/pool size Resampling Input shape Output shape

Unit 1 2D convolution 3 � 3 - 256 � 256 � 1 256 � 256 � 16
2D convolution 3 � 3 - 256 � 256 � 16 256 � 256 � 16
2D max pooling 2 � 2 Down 256 � 256 � 1 128 � 128 � 16

Unit 2 2D convolution 3 � 3 - 128 � 128 � 16 128 � 128 � 32
2D convolution 3 � 3 - 128 � 128 � 32 128 � 128 � 32
2D max pooling 2 � 2 Down 128 � 128 � 32 64 � 64 � 32

Unit 3 2D convolution 3 � 3 - 64 � 64 � 32 64 � 64 � 64
2D convolution 3 � 3 - 64 � 64 � 64 64 � 64 � 64
2D max pooling 2 � 2 Down 64 � 64 � 64 32 � 32 � 64

Unit 4 2D convolution 3 � 3 - 32 � 32 � 64 32 � 32 � 128
2D convolution 3 � 3 - 32 � 32 � 128 32 � 32 � 128
2D max pooling 2 � 2 Down 32 � 32 � 128 16 � 16 � 128

Unit 5 2D convolution 3 � 3 - 16 � 16 � 128 16 � 16 � 256
2D convolution 3 � 3 - 16 � 16 � 256 16 � 16 � 256
2D max pooling 2 � 2 Down 16 � 16 � 256 8 � 8 � 256

Unit 6 2D convolution 3 � 3 - 8 � 8 � 256 8 � 8 � 384
2D convolution 3 � 3 - 8 � 8 � 384 8 � 8 � 384
2D max pooling 2 � 2 Down 8 � 8 � 384 4 � 4 � 384

Unit 7 2D convolution 3 � 3 - 4 � 4 � 384 4 � 4 � 512
2D convolution 3 � 3 - 4 � 4 � 512 4 � 4 � 512
2D max pooling 2 � 2 Down 4 � 4 � 512 2 � 2 � 512

Unit 8 2D convolution 3 � 3 - 2 � 2 � 512 2 � 2 � 512
2D convolution 3 � 3 - 2 � 2 � 512 2 � 2 � 512
2D max pooling 2 � 2 Down 2 � 2 � 512 1 � 1 � 512
Flatten + Fully connected - - 1 � 1 � 512 256
Fully connected 256 128
Fully connected - - 128 2

Fig. A1. Examples of the use of circular padding and zero padding. Compared to the patterns generated using zero padding, those produced using circular padding remain
more periodic.
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Fig. A2. (a) Performance of the solver evaluated using the MSE between the predicted and reference elastic moduli for different numbers of data points. (b) Comparison
between the solver-predicted and reference elastic moduli. The latter are the elastic moduli of tested patterns calculated by the homogenization algorithm.
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to decrease the MSE further even when using a larger dataset (e.g.,
200,000 datapoints). To be conservative, we chose 100,000 data-
points for the training process. Fig. A2(b) presents the predicted
Young’s moduli and Poisson’s ratios of the tested patterns, in which
the values predicted by the solver are close to the reference values,
thus demonstrating the good performance of the solver. The linear
relationship of the solver-predicted results is better than that of
the CGAN-generated results. After the solver had been well trained,
the checkpoints of the solver were saved and the solver was used
to train the generator and discriminator, in which the saved check-
points were used to calculate the loss of the patterns produced by
the generator. The process spent approximately 35 h to train 200
epochs on a single NVIDIA RTX A6000 graphic card.
Appendix B. Patterns generated by CGAN

The well-trained CGAN is capable of generating numerous pat-
terns with a user-defined Young’s modulus and Poisson’s ratio.
Fig. A3. Patterns generated by the CGAN with di
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Fig. A3 shows some patterns produced by the CGAN with different
Young’s moduli and Poisson’s ratios. The results show that the val-
ues of the input elastic moduli are very close to those of the output
elastic moduli, which further demonstrates the good performance
of the CGAN. Note that the differences between the elastic moduli
calculated by the homogenization algorithm and the FEM simula-
tion are caused by the algorithms themselves. The close agreement
among the results of the CGAN predictions, FEM simulations, and
experiments confirms that the proposed CGAN-based technique
is a robust method for the inverse design of auxetic metamaterials.

We also investigated the deformation behaviors of different
CGAN-generated patterns under uniaxial compression (Fig. A4).
The good curve fitting of the stress–strain curves and Poisson’s
ratio curves along the x- and y-axes demonstrates the isotropic
properties of this type of pattern. Furthermore, some patterns that
initially have positive Poisson’s ratios exhibit auxetic behavior dur-
ing further compression, which is caused by the shrinking of inte-
rior concave pores.
fferent Young’s moduli and Poisson’s ratios.



Fig. A4. Deformation behavior of patterns with different elastic moduli. (a) Progressively deformed configurations of FEM model under uniaxial compressive loading. (b)
Poisson’s ratio–strain curves and (c) stress–strain curves from FEM simulations.
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