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Harmonic, quasi-harmonic, and anharmonic phonon properties of crystals are getting to be better predicted using first-
principles phonon calculations by virtue of the progress of the calculation methods and increasing computer power. In
this review, basic formulae of phonon properties are reviewed with the phonon calculation examples performed using
the phonon calculation codes, phonopy and phono3py, combined with the first-principles calculations. The
computational workflow to utilize the first-principles phonon calculation is straightforward and its automation is of
great interest to science. Therefore, a few practical applications of the automated first-principles phonon calculations are
also presented.
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1. Introduction

In crystals, atoms vibrate collectively. The collective
atomic motions are often described by phonons. Since
phonons are ubiquitous, understanding phonons is required
in every research of crystals. Phonons are measured by

Raman and infrared (IR) spectroscopies that are used to
observe phonon spectra near the origin of reciprocal space.
Inelastic neutron and X-ray scatterings can measure the
phonon spectra at general points in reciprocal space, although
they require large-scale facilities for the use. Each phonon
measurement technique has each advantage, and they are
used as complemental techniques. In addition to these
experimental tools, phonon calculation is another comple-
mental tool of the phonon measurement.

The phonon calculation is used for a variety of research
purposes due to its high predictability. Thermal properties
such as heat capacity, thermal expansion, and thermal
conductivity are well predicted by using it. Systematic data
of phonon properties can be generated by the high-
throughput phonon calculation.

Our computer power has been growing exponentially for
many years as shown in Fig. 1. Utilizing massive computer
power, significant theoretical predictions will be achieved by
computer simulations. In solid state physics, the computer
simulation solving electronic Schödinger equation, which is
called first-principles calculation, has become of practical use
by great amount of efforts of many researchers and engineers
in this and last centuries.1) Increasing computer power
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Fig. 1. (Color online) The 500 most powerful non-distributed computer
systems in the world from the TOP500 project.7,8)
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brought the first-principles calculation being developed
toward more accurate calculations, larger scale calcula-
tions, and high-throughput calculations. Strongly assisted
by user-friendly software packages, e.g., the VASP2–4) and
QuantumEspreesso5,6) codes and many more, the first-
principles calculation is used as a routine tool for a variety
of purposes in different fields of science and industry.

Progress of the first-principles calculations and growth of
computer power in the last decades enabled us to perform the
phonon calculations based on the first-principles calculation.
Phonon properties predicted by first-principles phonon
calculation are often in good agreements with experimental
results, and the first-principles phonon calculation is now
recognized as a routine tool in science and engineering. The
required computational demand is reasonably small at the
harmonic and quasi-harmonic approximations for the current
computer power. The operation of the calculations is
straightforward even for non-specialists of theoretical
calculations with the aid of user-friendly simulation codes.

Accurate phonon calculation requires accurate derivatives
of crystal potential with respect to atomic displacements that
are called force constants. Until the first-principles calculation
became usable as the simulation engine, it had been difficult to
obtain accurate force constants in a systematic way. For the
predictive accuracy, the phonon calculation relies on the first-
principles calculation indispensably. In the majority of cases,
the density functional theory (DFT)9,10) is used as the first-
principles calculation for the phonon calculation.

There are two popular types of the first-principles phonon
calculations: finite-displacement supercell approach and
density-functional perturbation theory (DFPT).11–16) Differ-
ence of their computational procedures is presented briefly
in Fig. 2. In the finite-displacement supercell approach, the
first-principles calculation is used as the engine to obtain
atomic forces in supercell crystal structure model. The force
constants are calculated from sufficient number of supercells
with different sets of displacements and respective forces
obtained by the first-principles calculation. The detailed
computational workflow is presented in Sect. 7.1. The
phonons are calculated exactly (i.e., without interpolation)
from the supercell force constants at the wave vectors
commensurate with the supercell shape with respect to the
primitive cell. At the other wave vectors, phonons are
obtained as interpolated results. In practice, use of the
supercell size with a few hundred atoms often gives
reasonable phonon results by the interpolation, although the
required accuracy depends on the calculation purposes. The
details of this approach are described in Sect. 3.4.

In the DFPT approach, force constants are exactly
calculated in reciprocal space at arbitrary wave vectors by
solving the variation of the Kohn–Sham orbitals. Optionally,
direct-space force constants similar to the supercell force
constants are computed by the Fourier transform from the
reciprocal-space force constants sampled on a regular grid.15)

The force constants in direct space are again Fourier
transformed to those in reciprocal space at arbitrary wave
vectors. This technique may be called Fourier interpolation.

Normally, users choose the phonon calculation approach
following the research purpose and computational environ-
ment. Using the finite-displacement supercell approach,
accessible exact wave vectors are limited to those commen-

surate points of the supercell shape. It means that, to calculate
phonons near Γ point exactly, a huge supercell is necessary
and it requires large computational demand or usually
impractical. Using DFPT, phonons at any wave vectors are
calculated exactly. By the same computational reason, DFPT
is advantageous or only practically possible in dense
sampling of exact wave vectors in the reciprocal space. This
is especially important for the system where the Fourier
interpolation poorly works. A practical advantage of the
finite-displacement supercell approach is in the fact that
atomic force calculations for a variety of exchange–
correlation functionals, pseudo-potential methods, and be-
yond-DFT approaches are implemented in popular first-
principles calculation codes, however, it may not be the case
for DFPT implementations.

At the level of the harmonic and quasi-harmonic
approximations, the first-principles phonon calculation has
became a routine tool for research. It is widely used not only
in scientific community but also for engineering purpose.
Many researchers or engineers would be able to find
computational resources to perform it. The community of
the phonon calculation grows constantly. There are a wide
variety of the phonon calculation codes, e.g., in the finite-
displacement supercell approach, the PHONON,17) PHON,18)

ALAMODE,19–21) YPHON,22) TDEP,23–25) and phonopy26)

codes, and in DFPT, the Quantum ESPRESSO, Abinit,27–29)

and ELK30) codes. The VASP code implements the both
approaches at Γ point. Each code has its specialty and
advantage and users choose the codes following their own
purposes.

Efforts payed on scientific software development and
modern computing power allowed us to perform lattice
thermal conductivity (LTC) calculation from the Peierls–
Boltzmann equation31–34) based on the first-principles phonon
calculation. This enabled us to predict thermal conductivity
of nonmagnetic insulators at reasonable accuracy as pre-
sented in Sect. 6. There are several software packages for this
type of the LTC calculations, e.g., ALAMODE, TDEP,
ShengBTE,35) almaBTE,36) PhonTS,37) and phono3py.38)

Self-consistent phonon calculation is necessary for
strongly anharmonic crystals. In the last decade, active
research has been made in this field,20,25,39) and a variety of
the methods have been developed. Software packages that
implement those methods are available in the codes such
as the SCAILD,40) ALAMODE, TDEP, QSCAILD,41) and
SSCHA39,42–45) codes. An example is presented in Sect. 7.3.

Finite-displacement
supercell approach DFPT

Direct calculation of force
constants at arbitray wave
vectors of primitive cell

Calcualtion of forces on atoms
in supercells with introduced
finite atomic disptacements

edoc TPFD ybedoc TFD yb

Calculation of force constants
in supercell from the dataset
of displacements and forces

by phonon code

+ +
Optionally, interpolation of
force constants in reciprocal
space by Fourier transform

by phonon code

Fig. 2. Computational procedures of force constants by finite-displacement
supercell approach and DFPT.
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Although force-constants calculation has been provided as
a feature of each phonon code, a few software packages such
as the ALM46) and hiPhive47) codes have been developed
specifically for the force-constants calculation. These codes
have a variety of advanced features and modern accessibility
as software libraries to be usable from phonon calculation
codes. One of the aims of these codes is to calculate
anharmonic force constants efficiently. The other important
feature is to calculate force constants at finite temperatures
introducing finite atomic displacements beyond small
displacement regime (See Sect. 7.3).

In this review, computational approaches of the first-
principles phonon calculations are explained for research
applications at different levels of approximations. Although
the basic theory of phonons are described for the use of
explanation, it is recommended to refer the excellent books
(e.g., Refs. 33, 34, 48–52) to learn the physics of phonons
in depth, where vital theoretical and mathematical insights
are found. Notably, symmetry properties of phonons are
insightful,49,53–55) but are omitted in this review.

In the following sections, formulae and methods imple-
mented in the phonopy and phono3py codes are presented
along with associated calculation examples. In Sect. 2, crystal
model and crystal potential used for the phonon calculation
are described. In Sect. 3, to define phonons, transformation of
atomic vibrations from direct coordinates to phonon coor-
dinates is introduced. Then finite-displacement supercell
approach and a variety of harmonic phonon properties are
presented. Some numerical techniques are covered briefly
in this section. In Sect. 4, quasi-harmonic approximations
(QHA) and its applications are presented. Thermal expansion
is treated in this section. In Sect. 5, phonon–phonon
interaction as anharmonic phonon calculation is described.
Using the result of the phonon–phonon interaction calcu-
lations, LTC calculations and some means to analyze the
results are presented in Sect. 6. Since intelligent use of huge
computing power is important for us, a computational
workflow of a typical phonon calculation is explained in
Sect. 7. High-throughput phonon calculation and particular
algorithms employed for the studies are presented as use
cases of automated phonon calculation workflows.

2. Crystal Structure and Potential

A crystal in the phonon calculation is treated as a physical
model where equilibrium positions of atoms are arranged on
the crystal lattice under the periodic boundary condition. In
this model, atoms vibrate in the vicinity of their equilibrium
positions as illustrated in Fig. 3. The crystal structure is
represented by basis vectors of a unit cell at the lattice point l
and equilibrium positions of atoms labeled by κ in each unit
cell. The atoms are indexed compositely by l� and their
equilibrium positions are denoted as R0

l�. The number of unit
cells in a crystal and the number of atoms in each unit cell are
denoted by N and na, respectively. Vc is used to mean the
volume of the unit cell. NVc gives the volume of the crystal.

Atomic positions Rl� deviate from their equilibrium
positions R0

l� by vibrations. The deviations are measured by
displacements ul� ¼ Rl� � R0

l�. With respect to the displace-
ments, potential energy of crystal V may be expanded into a
Taylor series:
V ¼ �0 þH 1 þH 2 þH 3 þ � � �

¼ �0 þ
X
l��

�l��ul��

þ 1

2

X
l��;l0�0�0

�l��;l0�0�0ul��ul0�0�0

þ 1

3!

X
l��;l0�0�0;l00�00�00

�l��;l0�0�0;l00�00�00ul��ul0�0�0ul00�00�00 þ � � � ;

ð1Þ
where α denotes the Cartesian index, and the coefficients of
the series expansion, �0, �l��, �l��;l0�0�0 �l��;l0�0�0;l00�00�00 , are
the zero-th, first, second, and third order force constants,
respectively. �l�� ¼ 0 are assumed because ul� are measured
from their equilibrium positions, and �0 ¼ 0 is chosen in the
next section.

3. Harmonic Phonon Calculation

3.1 Normal coordinates
The phonon calculation is based on a lattice model of

interacting atoms as illustrated in Fig. 3. Normal coordinates
are convenient to describe the system, which may be

Fig. 3. (Color online) Crystal structure model and interacting atoms vibrating in the vicinity of their equilibrium positions R0
l�. The atomic positions Rl�

deviate from their equilibrium positions due to vibrations, which is described by displacements ul� ¼ Rl� �R0
l�. In the Taylor series expansion of crystal

potential with respect to the displacements of Eq. (1), the expansion coefficients (�lk�;l0k0�0 ;...) are viewed as generalized spring constants among atoms.
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introduced as follows. In the harmonic approximation with
�l��;l0�0�0 ¼ @2V

@ul��@ul0�0�0
and ignoring higher order terms

�l��;l0�0�0;l00�00�00;��� � 0, the energy of vibrating atoms are
written as

H ha ¼ T þH 2

¼
X
l��

1

2
m�

dul��
dt

� �2

þ 1

2

X
l��;l0�0�0

ul���l��;l0�0�0ul0�0�0 ; ð2Þ

where m� gives the atomic mass. Defining mass normal-
ized displacement ~ul�� ¼ ffiffiffiffiffiffi

m�
p

ul��, Eq. (2) is rewritten
as

H ha ¼
X
l��

1

2

d ~ul��
dt

� �2

þ 1

2

X
l��;l0�0�0

~ul��
1ffiffiffiffiffiffi
m�

p �l��;l0�0�0
1ffiffiffiffiffiffi
m0

�

p
 !

~ul0�0�0 : ð3Þ

Looking at the reduced force constants ~�l��;l0�0�0 ¼
1ffiffiffiffi
m�

p �l��;l0�0�0
1ffiffiffiffiffi
m�0

p as a square matrix ~�, since ~� is a
symmetric matrix, it is diagonalized as

~� ¼ U�2U>; ð4Þ
where �2 ¼ diagð� � � ; !2

�; � � �Þ and U is the orthogonal matrix
whose columns are the eigenvectors wl��ð�Þ. ξ denotes the
index of the normal mode. Equation (2) is rewritten in the
matrix notation with introducing the column matrix ~u ¼
ð ffiffiffiffiffiffi

m�
p

ul�� � � �Þ> as

H ha ¼ 1

2
_~u> _~u þ 1

2
~u> ~�~u

¼ 1

2
ðU> _~uÞ>ðU> _~uÞ þ ðU> ~uÞ>�2ðU> ~uÞ

¼ 1

2
_Q> _Q þ 1

2
Q>�2Q; ð5Þ

where Q gives the normal coordinates defined by ~u ¼ UQ
and the dot on ~u and Q means the time derivative.

3.2 Dynamical matrix
The eigenvalue problem of Eq. (4) is written explicitly

as X
l0�0�0

~�l��;l0�0�0wl0�0�0 ð�Þ ¼ !2
�wl��ð�Þ: ð6Þ

By the Bloch theorem, the eigenvector wl��ð�Þ of the wave
vector q is written as33,50)

wl��;qð�Þ ¼ 1ffiffiffiffi
N

p W��ð�Þeiq�R0
l� ; ð7Þ

where W��ð�Þ is a periodic function of the crystal lattice.
In Eq. (7), the factor 1ffiffiffi

N
p normalizes W��ð�Þ so thatP

�� jW��ð�Þj2 ¼ 1. Substituting Eq. (7) into Eq. (6), multi-
plying both sides of Eq. (6) by e�iq�R

0
l� =

ffiffiffiffi
N

p
, and summing

over l on both sides of the equation to getX
�0�0

D��;�0�0 ðqÞW�0�0 ðq�Þ ¼ !2
q�W��ðq�Þ; ð8Þ

where ξ is replaced by the composite index q� of the phonon
modes, and

D��;�0�0 ðqÞ ¼
X
ll0

e�iq�R
0
l�ffiffiffiffi

N
p ~�l��;l0�0�0

eiq�R
0
l0�0ffiffiffiffi
N

p

¼ 1

N
ffiffiffiffiffiffiffiffiffiffiffiffi
m�m�0

p
X
ll0

�l��;l0�0�0eiq�ðR
0
l0�0 �R0

l�Þ

¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi
m�m�0

p
X
l0

�0��;l0�0�0eiq�ðR
0
l0�0 �R0

0�Þ: ð9Þ

D��;�0�0 ðqÞ is the dynamical matrix. In Eq. (8), ν of q�
denotes the phonon band index. In the last equation of
Eq. (9), lattice translational symmetry of the force constants
was used. Note that the definition of the dynamical matrix in
Eq. (9) (C-type34)) is used throughout this review although
several different definitions are available in literature.
Another popular definition (D-type34)) uses the phase factor
by the distance between lattice points as follows:

DD-type
��;�0�0 ðqÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffi

m�m�0
p

X
l0

�0��;l0�0�0e
iq�ðR0

l0 �R0
0Þ: ð10Þ

These two dynamical matrices are mutually related by a
unitary transformation, therefore, their eigenvalues (!2

q�) are
the same, but their eigenvectors are different by phase factors
as follows:

WD-type
�� ðq�Þ ¼ W��ðq�Þeiq�R0

0� ; ð11Þ
where WD-type

�� ðq�Þ is an eigenvector of DD-type
��;�0�0 ðqÞ.

3.3 Phonon coordinates
In practice, the eigenvalue problem of Eq. (8) is solved

using a linear algebra solver, e.g., LAPACK56) or its
convenient interface such as numpy,57) for which D��;�0�0 ðqÞ
is arranged in a 3na � 3na matrix DðqÞ as illustrated in Fig. 4.
Since DðqÞ is an Hermitian matrix, i.e., DyðqÞ ¼ DðqÞ, it
is diagonalizable with real eigenvalues !2

q� similarly to
Eq. (4),

DðqÞ ¼ UðqÞ�2ðqÞUyðqÞ: ð12Þ
In Eq. (12), UðqÞ is the unitary matrix whose columns are the
eigenvectors W��ðq�Þ, and �2ðqÞ ¼ diagð� � � ; !2

q�; � � �Þ where
!q� is the phonon frequency. The matrix DðqÞ is positive
definite (at q ¼ 0 positive semi-definite) if the crystal is
dynamically stable. Otherwise, the crystal should exhibit
spontaneous structural transition by breaking the crystal
symmetry. The dynamical stability can be examined by !q�.
Any imaginary phonon frequency indicates structural insta-
bility.

From ~u ¼ UQ in Eqs. (5) and (7), the displacement is
written as

ul�� ¼ 1ffiffiffiffiffiffiffiffiffi
Nm�

p
X
q�

Qðq�ÞW��ðq�Þeiq�R0
l� ; ð13Þ

where Qðq�Þ are the phonon coordinates. Using phonon
creation (ayq�) and annihilation (aq�) operators, the solution
of the harmonic oscillator problem58) suggests Qðq�Þ to be
represented by50,51)

Qðq�Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
ħ

2!q�

s
ðaq� þ ay�q�Þ; ð14Þ

where ħ is the reduced Planck constant. The harmonic
Hamiltonian is transformed to be written by using ayq� and
aq� as a sum over all phonon modes,33,50,51)
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H ha ¼
X
q�

ħ!q� ayq�aq� þ
1

2

� �
: ð15Þ

Statistical average of phonon occupation number of each
phonon mode known as the Bose–Einstein distribution is
given by

nq�ðTÞ ¼ hayq�aq�i ¼
1

e
ħ!q�

kBT � 1
¼ 1

2e
ħ!q�

2kBT sinh
ħ!q�

2kBT

; ð16Þ

where kB and T are the Boltzmann constant and temperature,
respectively. Using Eq. (16), harmonic phonon energy is
obtained as

hH hai ¼
X
q�

ħ!q� nq� þ 1

2

� �
: ð17Þ

3.4 Supercell model
With the atomic forces and small displacements, the

harmonic force constants �l��;l0�0�0 are obtained by solving
simultaneous linear-equations:17)

� fl�� ¼
X
l0�0�0

�l��;l0�0�0ul0�0�0 : ð18Þ

In the finite-displacement supercell approach, supercell
model is employed to calculate force constants in Eq. (18).
The supercell is built by integer linear-combination of basis
vectors of the primitive cell. More precisely, the basis vectors
of the primitive cell, ðap;bp; cpÞ, is transformed by an integer
matrix Pp!s having positive determinant to those of the
supercell, ðas;bs; csÞ, as

ðas;bs; csÞ ¼ ðap;bp; cpÞPp!s: ð19Þ
In the supercell, one or multiple atoms are displaced, and

the forces on all atoms in the supercell are calculated using
the first-principles calculation. As an example shown in
Fig. 5, one atom is displaced in a supercell. The supercell
contains jPp!sj primitive cells. The periodicity inside the
supercell is broken by the displacement as shown in
Fig. 5(a). In the first-principles calculation for solids, the
supercell model is the unit of the periodicity as shown in
Fig. 5(b), and forces of all atoms in the supercell are
calculated under the system where each mirror image of
the supercell contains the same displacement. The force of
each atom is obtained as the response of the all displace-
ments.

Sufficient number of supercells with different configura-
tions of displacements and their calculated forces are required
as a dataset to solve Eq. (18) so that the degrees of freedom
of the force constants are fulfilled. Thus obtained force
constants are called supercell force constants. The degrees of
freedom of the supercell force constants are reduced utilizing
various symmetries. This means that required number of
supercells with displacements is also reduced. In typical DFT
calculations, all atomic forces in a supercell are obtained by
small additional computation from the converged Kohn–
Sham orbitals.1) This is a useful feature of quantum
mechanical calculations.

Supercell
Primitive cell

Finite displacement

l1 l2

l3 l4

)a(

l1 l2

l3 l4

l1 l2

l3 l4

l1 l2

l3 l4

l1 l2

l3 l4

l1 l2

l3 l4

l1 l2

l3 l4

l1 l2

l3 l4

l1 l2

l3 l4

l1 l2

l3 l4

)b(

Fig. 5. (Color online) (a) A supercell contains jPp!sj primitive cells, where atoms are depicted by circles. A finite displacement is introduced in one of the
primitive cells. l1, l2, l3, and l4 are the indices of the lattice points (or primitive cells) in the supercell. The displacement in the supercell breaks the periodicity
inside the supercell. (b) Forces in the supercell are calculated under the periodic boundary condition of the supercell. The atom near the center of the figure
(filled star symbol) feels the displacements in all mirror images of the supercell.

κ

κ

κ'

xx xy xz
yx yy yz
zx zy zz

κ'

Fig. 4. Dynamical matrix represented in a matrix shape of 3na � 3na. This
square matrix is readily diagonalizable using a linear algebra solver, e.g.,
LAPACK,56) or its convenient interface such as numpy.57)

J. Phys. Soc. Jpn. 92, 012001 (2023) Invited Review Papers A. Togo

012001-5 ©2023 The Physical Society of Japan©2023 The Author(s)

J. Phys. Soc. Jpn.
Downloaded from journals.jps.jp by （研）物質・材料研究機構 on 12/07/22



The dynamical matrix in Eq. (9) is approximately
constructed by summing over the lattice points inside the
supercell [l1 to l4 in Fig. 5(a)] instead of the lattice points in
the whole crystal. To preserve symmetry of the dynamical
matrix, as a normal choice, the phase factor eiq�ðR0

l0�0 �R0
0�Þ is

calculated as the average over the phase factors of those
shortest pairs by jR0

l0�0 � R0
0�j in the supercell periodicity

when equidistant shortest pairs exist.17) The dynamical
matrices of the supercell force constants calculated in this
way are exact only at the wave vectors commensurate with
the supercell dimension Pp!s. At the other wave vectors, they
are calculated as the results of the Fourier interpolations.
Since atomic interactions are expected to decay with
increasing distances among atoms, if a sufficiently large
supercell is used, the interpolated dynamical matrix becomes
a good approximation.

An example of the effect of the supercell size is shown in
Fig. 6. These phonon band structures of Ti3SiC2 were
calculated for this review using 2 � 2 � 1 and 4 � 4 � 1

supercells. The computational details are similar to those
found in Ref. 59, however, the generalized gradient approx-
imation of Perdew, Burke, and Ernzerhof revised for solids
(PBEsol)60) was employed as the exchange correlation
potential. These phonon band structures are almost identical
except for the bands in the frequency range around 5THz
where the phonons are localized. These phonons are
attributed mainly to vibrations of Si atoms59) (see Fig. 8).
This means that the interactions between Si atoms are
considered relatively long range compared with the other
atomic interactions in Ti3SiC2. The 4 � 4 � 1 supercell
should be used to describe the fine phonon band structure.
However, since most of phonon frequencies are well
converged at the 2 � 2 � 1 supercell, use of the smaller
supercell may be acceptable depending on the purpose of the
calculation, e.g., for phonon thermal properties.

3.5 Non-analytical term correction
Atomic displacements in crystal induce electrostatic

polarization in ionic crystals. Atomic interaction by the
polarization is by far longer-range than the supercell size
accessible by practical first-principles calculation. Therefore,
this is treated differently from the supercell force constants

calculation of Eq. (18). An approach that the phonopy code
employs is so-called non-analytical term correction
(NAC).13,15,61,62) Dipole–dipole interaction is calculated from
static dielectric constant tensor and Born effective charges
that are obtained by a DFPT calculation.13,15,62) This
contribution is included to the dynamical matrix of Eq. (9)
at each wave vector. To apply this approach to the supercell
force constants, a part of the dipole–dipole interaction
included at the supercell force constants calculation of
Eq. (18) is subtracted from the supercell force constants to
avoid double counting the contribution. Then the long-range
interactions are added to the dynamical matrix at each wave
vector. More details about the NAC implementation in the
phonopy code will be written elsewhere.

An example of application of NAC to NaCl is shown in
Fig. 7. This calculation was performed using the raw data
of the harmonic phonon calculation used in Ref. 63. The
difference between the phonon frequencies calculated with
and without NAC becomes larger approaching to the Γ point
and the effect of NAC tends to be larger for higher frequency
modes. Whether the use of NAC is necessary or not depends
on research purposes. In many crystals, harmonic thermal
properties may be well predicted without NAC.
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3.6 Density of states
Phonon density of states (DOS) per unit cell is written as64)

Dð!Þ ¼ 1

N

X
q�

�ð! � !q�Þ � Vc

ð2�Þ3
Z

dq
X
�

�ð! � !q�Þ:

ð20Þ
This calculation is a Brillouin zone (BZ) integration. In the
numerical calculation of the BZ integration, normally
reciprocal primitive cell is discretized using a regular grid
of q. In smearing methods, the delta function is replaced by a
reasonable bell-shaped function whose integral is one, e.g.,
Gaussian or Lorentzian function shapes. Another popular BZ
integration methods are tetrahedron methods. In the phonopy
code, a linear tetrahedron method based on the algorithms of
Refs. 65 and 66 is implemented.

Since phonon eigenvector W��ðq�Þ tells how each atom
vibrates in the phonon mode q� [see Eq. (13)], to represent
particular atomic contributions to DOS, Eq. (20) is projected
onto the norms of the eigenvector elements as

D��ð!Þ ¼ 1

N

X
q�

�ð! � !q�ÞjW��ðq�Þj2: ð21Þ

D��ð!Þ is a projected DOS (PDOS). Note that
P

�� D��ð!Þ ¼
Dð!Þ because of Eq. (12), i.e., orthonormality of eigenvec-
tors.50) Another convenient PDOS is defined by D�ð!Þ ¼P

� D��ð!Þ.
As an example, phonon DOS and PDOS of Ti3SiC2

calculated using the 4 � 4 � 1 supercell are shown in
Fig. 8. We can see that the localized phonons around
5THz are mostly attributed to vibrations of Si atoms parallel
to the basal plane. Vibration of Si atoms perpendicular to the
basal plane is located at much higher frequencies. Direction
dependence of vibrations can be seen in C atoms, too. For Ti
atoms, the projections onto directions were not shown, since
they were found relatively isotropic.

3.7 Atomic displacements at finite temperatures
Mean-squared displacements of atoms at finite temper-

atures within the harmonic approximation are derived from
Eqs. (13) and (14) using the commutation relations of
phonon creation and annihilation operators as

hjul��j2i ¼ 1

Nm�

X
q�

ħ
2!q�

½1 þ 2nq�ðTÞ�jW��ðq�Þj2: ð22Þ

Equation (22) can be seen as a weighted PDOS integrated
over phonon frequency. The numerical calculation is

performed by a simple summation over phonon modes on
the regular grid of q. Applications of this calculation are
found, e.g., in Refs. 67 and 68. Using sophisticated visual-
ization software for crystals such as VESTA69) or Crystal-
Maker,70) the mean-squared displacements are visualized
nicely as thermal ellipsoids. As an example, its visualization
of Ti3SiC2 calculated at 1373K is shown in Fig. 9. Si atoms
show strongly anisotropic mean-squared displacements. This
is explained by the characteristic phonon PDOS as shown in
Fig. 8, where PDOS of Si atoms vibrating parallel (Si-xy)
and perpendicular (Si-z) to the basal plane accommodate
in well-separated frequency regions. Since low frequency
modes have larger contribution by 1=!q� and nq� in Eq. (22),
the mean-squared displacements of Si atoms are calculated as
elongated in x–y direction. Those of C atoms show ellipsoids
elongated slightly in z direction as can be guessed from
PDOS in Fig. 8. Neutron diffraction measurement by Lane
et al. presented a good agreement in the mean-squared
displacements between the experiment and calculation of
Ti3SiC2.67)

The mean-squared displacement projected onto a unit
vector n̂ may be useful being defined as

hjn̂ � ul�j2i
¼ 1

Nm�

X
q�

ħ
2!q�

½1 þ 2nq�ðTÞ�jn̂ �W�ðq�Þj2: ð23Þ

Fig. 9. (Color online) Unit cell of Ti3SiC2 (P63=mmc) drawn using
VESTA software.69) Atoms are drawn as 99% probability thermal
ellipsoids calculated at 1373K.
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This is used for the calculation of harmonic Debye–Waller
factor e�

1
2
hjQ�u�j2i in one-phonon dynamic structure factor

[Eq. (26)] in the phonopy code.

3.8 Dynamic structure factor
Phonon spectra at general points are measured by inelastic

neutron scattering (INS) and inelastic X-ray scattering (IXS).
The INS and IXS measurements require large instruments
that are shared by many researchers. Since the beam time for
the measurements is limited, it is useful to estimate dynamics
structure factor SðQ; �; !Þ in advance to choose the best Q
points for the measurements. In the measurement, incident
neutrons (INS) or photons (IXS) are scattered by crystal. The
wave vector relation is written as Q ¼ k � k0, where k and
k0 denote the wave vectors of the incident and scattered
particles, respectively. For INS, one-phonon dynamic
structure factor under the harmonic approximation is given
as71,72)

SðQ; �; !Þ+1ph

¼ k0

k

N

ħ

X
q

jFðQ;�q�Þj2ðnq� þ 1Þ�ð! � !q�Þ�ðQ � qÞ;

ð24Þ
SðQ; �; !Þ�1ph

¼ k0

k

N

ħ

X
q

jFðQ;q�Þj2nq��ð! þ !q�Þ�ðQ þ qÞ; ð25Þ

with

FðQ;q�Þ

¼
X
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ħ

2m�!q�

s
�b�e

�1
2
hjQ�u�j2ieiðQþqÞ�R0

0�Q �W�ðq�Þ; ð26Þ

where �b� is the average scattering length, and �ðQ � qÞ � 1

when the wave vector Q � q is any reciprocal lattice vector
G, otherwise 0. Note that the phase factor of the last equation
is different from that in Ref. 71 because Ref. 71 employs
dynamical matrix of Eq. (10). One phonon is created in
Eq. (24) and absorbed in Eq. (25).

The dynamic structure factor is not a periodic function
of G. Intensity of the phonon measurement depends
largely on the choice of BZ (or G) that Q belongs as it
is clear from the factor Q �W�ðq�Þ in FðQ;q�Þ. The
inner product Q �W�ðq�Þ shows that Eq. (24) is sensitive
to the polarization (eigenvector) of atoms in each phonon
mode. In general, it is difficult to guess W�ðq�Þ for a
variety of crystals either quantitatively or qualitatively.
Therefore, the first-principles phonon calculation became
an indispensable tool for the experimental phonon meas-
urements.

As an example, the phonon calculation of the dynamic
structure factor was performed for NaCl using the atomic
form factor f�ðQÞ data of Na+ and Cl− from Ref. 73 instead
of �b�, where the computational details are similar to those
used for Fig. 7. Figure 10 shows the IXS spectra of NaCl at
300K at the wave vector Q ¼ ð3:23 3:23 3:23Þ from
Ref. 74 and the calculated SðQ; �; !Þ+1ph. Although the
phonon frequencies slightly underestimate the peak posi-
tions of the IXS spectra, we can see that the dynamic
structure factor calculation estimates well the IXS peak
intensities.

3.9 Thermal properties at constant volume
Under the harmonic approximation, the phonon partition

function has the simple form:

Zha ¼
Y
q�

e�ħ!q�=2kBT

1 � e�ħ!q�=kBT
: ð27Þ

From Zha, Helmholtz free energy Fha and entropy Sha are
obtained as

Fha ¼ 1

2

X
q�

ħ!q� þ kBT
X
q�

ln½1 � e�ħ!q�=kBT�; ð28Þ

Sha ¼ 1

2T

X
q�

ħ!q� cothðħ!q�=2kBTÞ

� kB
X
q�

ln½2 sinhðħ!q�=2kBTÞ�: ð29Þ

Heat capacity at constant volume CV;ha is calculated from
Eq. (17) as

CV;ha ¼
X
q�

kB
ħ!q�

kBT

� �2
expðħ!q�=kBTÞ

½expðħ!q�=kBTÞ � 1�2 : ð30Þ

Numerical calculations of these thermal properties are
performed by simple summations over phonon modes
sampled on a regular grid of q similar to Eq. (22).

As an example, thermal properties of Al is presented in
Fig. 11. The experimental heat capacity75) is also shown
in Fig. 11 to compare with the calculated values. At low
temperatures, the experimental value and the calculated CV;ha

tend to agree well. Increasing temperature, CV;ha deviates
from the experimental value since effect of thermal expansion
is ignored. Using QHA, heat capacity at constant pressure
(CP) is calculated as presented in Sect. 4.2, and the
agreement with the experiment becomes better. In this Al
example, only phonon contribution to the thermal properties
was considered. For metals, entropic contribution from
electron can be non-negligible depending on electronic
structures. Other contributions by atomic configurations in
alloys, quasiparticles such as magnons, etc., would have to
be considered for research purposes. However, phonon is a
major source of these thermal properties.

3.10 Phonon group velocity
Calculation of phonon group velocity is useful in

estimating LTC (see Sect. 6). When a phonon wave packet
is well defined in crystal, it travels with the phonon group
velocity.32) The phonon group velocity vq� is written as

vq�;� � @!q�

@q�

 0  1  2  3  4  5  6  7  8  9
Frequency [THz]

Q=(3.23, 3.23, 3.23)

TA LA TO LO

Fig. 10. (Color online) The solid curve shows the IXS spectra of NaCl at
300K at the wave vector Q ¼ ð3:23 3:23 3:23Þ measured in the study of
Ref. 74. The lengths of the vertical lines depict calculated SðQ; �; !Þ+1ph.
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¼ 1

2!q�

@!2
q�

@q�

¼ 1

2!q�

X
��;�0�0

W	
��ðq�Þ

@D��;�0�0 ðqÞ
@q�

W�0�0 ðq�Þ: ð31Þ

The last equality is easier to handle than the first equality in
the numerical phonon calculation, since treatment of phonon-
mode connectivity in the phonon band structure is avoided.
The derivative of the dynamical matrix with respect to q in
the last equality of Eq. (31) is performed analytically or
numerically. The analytical derivative is easily done for
Eq. (9). However, when using NAC, the phonopy code
employs a finite difference method, i.e.,

D��;�0�0 ðq þ�q�Þ � D��;�0�0 ðq � �q�Þ
2j�q�j

; ð32Þ

since the approximation (32) is numerically stable, accurate
enough, and implemented straightforwardly.

3.11 Irreducible representation
Each phonon mode belongs to one of irreducible

representations of the space group at q. It is easy to compute
the irreducible representation from the calculated phonon
eigenvectors.

A space group operation S ¼ fRj	g, where R and τ are the
rotation and translation parts, respectively, is applied to the
eigenvector as follows:53)

W�0 ðq�Þ ¼
X
�

RW�ðq�Þeiq�ðS�1R0�0 �R0�0 Þ�S�;�0 : ð33Þ

�S�;�0 in Eq. (33) means that κ is sent to �0 by S ¼ fRj	g. For
a little group operation Sq ¼ fRqj	qg, q ¼ Rqq þG, the
element of the irreducible representation is calculated by

���0 ðSqÞ ¼
X
��0

W	
�0 ðq�ÞRqW�ðq�0Þ

� eiq�ðS
�1
q R0�0 �R0�0 Þ�Sq�;�0 : ð34Þ

By Eq. (34), the irreducible representation ���0 whose
dimension is larger than one is obtained as one of equivalent

representations, i.e., it may not be numerically unique. The
characters (traces of irreducible representation elements) are
determined uniquely. Reliable character tables of space-
group types are found at the bilbao crystallographic server.76)

Comparing calculated characters and the reference character
tables, phonon modes are assigned to the symbols of the
irreducible representations.

4. Quasi-harmonic Phonon Calculation

Phonon frequency changes under applied strain. This is an
anharmonic effect, but sometimes called quasi harmonicity
although this word can mean different phenomena in different
contexts.51) In the following sections, examples where QHA
is applied are presented.

4.1 Mode Grüneisen parameter
In Fig. 12(a), phonon DOS of Al calculated at different

unit-cell volumes are presented. These DOS were calculated
using the computational details as written in Ref. 26. Phonon
frequencies of many crystals tend to increase by compressing
unit cell. As shown in Fig. 12(b), roughly-linear relation of
phonon frequency with respect to a wide range of unit cell
volume is observed. This linear trend (either positive or
negative) is a typical behavior. As a measure of quasi
anharmonicity of crystals, the linear coefficient is defined as
mode Grüneisen-parameter,


q� ¼ � Vc

!q�

@!q�

@Vc
: ð35Þ

This is computed from the derivative of dynamical matrix
similarly to Eq. (31) but with respect to unit cell volume by


q� ¼ � Vc

2!2
q�

X
��;�0�0

W	
��ðq�Þ

@D��;�0�0 ðq; VcÞ
@Vc

W�0�0 ðq�Þ: ð36Þ

In the numerical calculation, finite difference method similar
to the approximation (32) is used in the implementation of the
phonopy code. The mode Güneisen parameter distribution of
Al sampled on a regular grid of q is shown in Fig. 12(c).

4.2 Thermal expansion
Due to the quasi anharmonicity, the Helmholtz free-energy

in Eq. (28) is dependent on unit-cell volume and temperature,
i.e., FhaðVc;TÞ. If we approximate the Helmholtz free-energy
as UelðVcÞ þ FhaðVc;TÞ, where UelðVcÞ is the electronic total
energy that can be also obtained from the first-principles
calculation, we can draw this energy function with respect to
Vc and T as shown in Fig. 13(a). Gibbs free-energy is given
by the following thermodynamic relation:

GðT; pÞ ¼ min
Vc

½UelðVcÞ þ FhaðVc;TÞ þ pVc�; ð37Þ
where p denotes the pressure. In the practical QHA
calculation, the energy functions are calculated at sampling
points of unit cell volumes as shown in Fig. 13(a), and the
energies are fitted to a nice smooth function such as equation
of states.77) At p ¼ 0, the energy bottom corresponds to the
Gibbs free energy. In Fig. 13(a), the cross symbols indicate
the Gibbs free-energies at temperatures. The equilibrium unit
cell volume at ðT; pÞ is obtained likewise by

V eq
c ðT; pÞ ¼ argmin

Vc

½UelðVcÞ þ FhaðVc;TÞ þ pVc�: ð38Þ
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Fig. 11. (Color online) Phonon thermal properties of Al from Ref. 26
licensed under CC-BY-4.0. The solid curves show the calculated thermal
properties of Helmholtz free energy (Fha), entropy (Sha), heat capacity at
constant volume (CV;ha), and heat capacity at constant pressure (CP) by
quasi-harmonic approximation. The dashed curve depicts the experimental
value of the heat capacity from the NIST-JANAF thermochemical tables.75)
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From the equilibrium volumes at temperatures, thermal
expansion coefficients are calculated as shown in Fig. 13(b).
A good agreement with the experimental values is obtained
for Al.

In Fig. 11, the heat capacity at constant pressure (CP) of
Al is presented. This was calculated by the thermodynamic
relation:

CPðT; pÞ ¼ �T @2GðT; pÞ
@T2

¼ CV;ha½T;VcðT; pÞ�

þ T
@VcðT; pÞ

@T

@ShaðT;VcÞ
@Vc

����
Vc¼VcðT;pÞ

: ð39Þ

The second equation is more stable numerically.

4.3 Structural phase transition under shear strain
The quasi harmonicity also appears under applied shear

strain. Hexagonal-close-packed (HCP) Ti is known to exhibit
twinning deformation.80) The f10�12g twinning mode that

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

U e
l+

 F
ph

 (e
V

)

Volume (Å3)

(a)

 60  65  70  75 80

0K

800K
 0

 20

 40

 60

 80

 100

 120

 0  200  400  600  800

Th
er

m
al

 e
xp

an
si

on
 c

oe
ffi

ci
en

t (
K

-1
 )

Temperature (K)

(b) ×10-6

Fig. 13. (Color online) These figures are obtained from Ref. 26 licensed under CC-BY-4.0. (a) Calculated values of UelðVcÞ þ FhaðVc;TÞ of Al with respect
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corresponds to a specific shear strain is observed most
frequently among the different twinning modes in Ti. In
Ref. 81, phonon structure change under the applied specific
strain was studied, and a characteristic phonon mode was
found particularly sensitive to this twinning deformation. As
shown in Fig. 14(a), phonon frequency of the characteristic
phonon mode indicated by filled circles drastically changes
applying small shear-strain, and eventually the crystal
structure exhibits spontaneous structural transformation at
∼0.7 twinning shear where the phonon frequency becomes
imaginary. The measure of the twinning shear is shown next
to Fig. 14(a), where the shape of the lattice is transformed
from the hexagonal lattice to the extended lattice that
conveniently represents the f10�12g twinning mode by an
integer transformation matrix similarly to Eq. (19).81) The
spontaneous transition releases stored elastic energy
[Fig. 14(b)], and the original HCP Ti (parent) transforms to
the HCP Ti having different orientation (twin) by rearranging
atomic positions that are displayed by small arrows in
Fig. 14(c).

At the twinning shear where the characteristic phonon
mode exhibits imaginary frequency, symmetry of the crystal
structure model was broken introducing tiny atomic displace-
ments corresponding to Eq. (13) of the characteristic phonon

mode with a small value of Qðq�Þ. The crystal structure with
the broken symmetry was relaxed by the first-principles
calculation to observe rearrangements of atomic positions.
Movements of atoms during the relaxation can be tracked
since the atoms are labeled. The collective displacements
indicated by circular arrows in Fig. 14 are recognized as a
shuffling mechanism of the f10�12g twinning mode.

The phonon calculations at the different twinning shears
in this study81) were performed systematically using an
automated phonon calculation workflow presented in Sect. 7.
Once the calculation workflow is automated, this research
approach is easily applicable to the other twinning modes. It
would be also used to discover unknown twinning modes of
crystals.

5. Anharmonic Phonon Calculation

In this and following sections, composite indices q� and
�q� are abbreviated by λ and ��, respectively.

5.1 Phonon coordinate transformation
Anharmonic terms of Eq. (1) may be expanded with

respect to phonon operators ða� þ ay��Þ instead of atomic
displacements. Then, the third-order terms in Eq. (1) are
written as
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becomes dynamically unstable and spontaneous structural transformation occurs. (b) Electronic total energy of shear strained Ti with respect to the twinning
shear. Applying the twinning shear, the energy increases monotonically. Symmetry breaking due to the spontaneous structure transformation relaxes the crystal
structure to the twin, i.e., the HCP Ti having different orientation (twin) with respect to the original HCP Ti (parent). The vertical arrow shows the energy
released by the relaxation at the fixed twinning shear. (c) Rearrangement of atomic positions by the spontaneous structural transformation. Small arrows depict
the atomic displacements. Circular arrows illustrate the collective atomic displacements introduced by the transformation, which is related to shuffling
mechanism of the f10�12g twinning mode.
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H 3 ¼
X
��0�00

���0�00 ða� þ ay��Þða�0 þ ay��0 Þða�00 þ ay��00 Þ: ð40Þ

���0�00 is obtained by substituting Eqs. (13) and (14) into the
third-order terms of Eq. (1) as50)

���0�00 ¼ 1ffiffiffiffi
N

p 1

3!

X
��0�00

X
��0�00

W�;��W�0;�0�0W�00;�00�00

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ħ
2m�!�

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ħ

2m�0!�0

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ħ

2m�00!�00

r

�
X
l0l00

�0��;l0�0�0;l00�00�00e
iq0 �ðR0

l0�0 �R0
0�Þeiq

00 �ðR0
l00�00 �R0

0�Þ

� eiðqþq
0þq00Þ�R0

0��ðq þ q0 þ q00Þ: ð41Þ
�ðq þ q0 þ q00Þ in Eq. (41) is the same as that defined for
Eq. (24), which is the result of translational symmetry of
force constants:

�l��;l0�0�0;l00�00�00 ¼ �0��;ðl0�lÞ�0�0;ðl00�lÞ�00�00 : ð42Þ
Higher order terms are transformed similarly, but only the
third-order terms are treated as anharmonic terms in this
review.

We can calculate all the values in Eq. (41) from the
harmonic phonon calculation except for the third-order force
constants�l��;l0�0�0;l00�00�00 . In the phono3py code, the third-order
supercell force constants are calculated in a similar approach
as Eq. (18) for the harmonic supercell force constants, but
the following simultaneous equations are solved:

� fl�� ¼
X

l0�0�0;l00�00�00
�l��;l0�0�0;l00�00�00ul0�0�0ul00�00�00 : ð43Þ

In Fig. 5, at least one atom is displaced in the supercell. For
the third-order supercell force constants, at least two atoms
are displaced in the supercell.82) As the result, the required
number of the supercells containing various configurations of
displacements to solve Eq. (43) becomes far larger than that
for the harmonic supercell force constants. Normally, the
computation is a few orders of magnitude more demanding
than that of the harmonic supercell force constants calcu-
lation. Often we expect, though not always, that the atomic
interaction range in direct space is shorter in higher-order
force constants. Assuming this, Eq. (43) can be solved
ignoring force-constants elements of atoms whose mutual
distances are larger than some cutoff distance. Using this
approach, the third-order supercell force constants calculation
may become less computationally demanding although
sacrificing their numerical accuracy.

The harmonic and anharmonic supercell force constants
are also calculated using the specific force constants

calculation codes such as the ALM46) and hiPhive47) codes.
These can perform the supercell force constants calculations
applying constrains of a variety of symmetries in addition to
the precise control of the cutoff distances. The calculated
supercell force constants are directly usable in the phonopy
and phono3py codes.

5.2 Phonon lifetime
Imaginary part of phonon self energy ��ð!Þ is computed

up to second order in H 3 using many body perturbation
theory.83–85) It takes a form analogous to the Fermi’s golden
rule,

��ð!Þ ¼ 18�

ħ2
X
�0�00

j����0�00 j2fðn�0 þ n�00 þ 1Þ

� ½�ð! � !�0 � !�00 Þ � �ð! þ !�0 þ !�00 Þ�
þ ðn�0 � n�00 Þ½�ð! þ !�0 � !�00 Þ
� �ð! � !�0 þ !�00 Þ�g: ð44Þ

The summation over q0 and q00 reduces to the summation
over only q0 because q00 ¼ G þ q � q0 where the reciprocal
lattice vector G is uniquely determined if the first BZ
boundary is defined. Phonon lifetime 	� is obtained by setting
! ¼ !� in Eq. (44) as,83)

	� ¼ 1

2��ð!�Þ : ð45Þ

The delta function in Eq. (44) eliminates many pairs of �0 and
�00 from the summation in the calculation of ��ð!�Þ. This
allows us to skip non-negligible amount of corresponding
computation of ���0�00 in the calculation of phonon lifetime.

In the phono3py code, the BZ integration in Eq. (44), i.e.,
the summation over �0 and �00 with the delta functions,
is performed either with a smearing method or a linear
tetrahedron method similarly to the DOS calculation as
explained in 3.6. The former is implemented just by replacing
the delta function by the normal distribution function. This
method requires one parameter of the smearing width. The
latter implementation follows the algorithms of Refs. 65 and
66, which requires no parameter. The former tends to
underestimate phonon lifetime compared with the latter. In
most cases, it is easier to use the latter method, however, the
implementation is more involved. The technical details of the
linear tetrahedron method implemented in the phono3py code
will be described elsewhere.

5.3 Phonon spectral function
Using the phono3py code, phonon spectral function of the

bubble diagram in the following form can be calculated,46,63)

A�ð!Þ ¼ 1

�

4!2
���ð!Þ

½!2 � !2
� � 2!���ð!Þ�2 þ ½2!���ð!Þ�2

; ð46Þ

where ��ð!Þ is the real part of the self energy given as83)

��ð!Þ ¼ 18�

ħ2
X
�0�00

j����0�00 j2 ðn�0 þ n�00 þ 1Þ
ð! � !�0 � !�00 Þp

� ðn�0 þ n�00 þ 1Þ
ð! þ !�0 þ !�00 Þp

� �
þ ðn�0 � n�00 Þ

ð! þ !�0 � !�00 Þp
� ðn�0 � n�00 Þ
ð! � !�0 þ !�00 Þp

� �� 	
: ð47Þ

The symbol p beside the parentheses in the denominators
means the Cauchy principal value. ��ð!Þ is calculated by
approximating the Cauchy principal value83) or by employing

the Kramers–Kronig relation. To draw the spectral shape of
A�ð!Þ, Eq. (44) is calculated at the phonon frequencies
uniformly sampled in the frequency interval ½0; 2!max�,
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where !max is the highest phonon frequency in BZ. In this
case, ��ð!Þ is easily calculated from ��ð!Þ using the
Kramers–Kronig relation since ω for ��ð!Þ is bounded and
��ð!Þ itself is calculated using the linear tetrahedron method
accurately. To employ the Kramers–Kronig relation, ��ð!Þ
is expanded to ½�2!max; 2!max� by using the odd function
property of ��ð!Þ.

As an example, phonon spectral function of KCl at 300K
calculated in the study of Ref. 63 is shown in Fig. 15(a).
The imaginary and real parts of self energy are shown
in Figs. 15(b) and 15(c), respectively. In the study of
Ref. 63, the phonon frequency was renormalized by
the stochastic self-consistent harmonic approximation
(SSCHA),39,42–44,86–89) and the third-order supercell force
constants were calculated under SSCHA. The dashed-dotted
curves in Fig. 15 depict the renormalized phonon frequencies
that correspond to !�. Due to anharmonicity, the phonon
band structure has distribution unlike Fig. 7. In Fig. 15(a),
we can see broad longitudinal optical (LO) band in high
frequency region. This is attributed mainly to large ��ð!Þ as
shown in Fig. 15(b). Phonon spectral shape may not be
approximated well by a Lorentzian function since frequency
dependency of ��ð!Þ and ��ð!Þ [not ��ð!�Þ and ��ð!�Þ]
creates complicated spectral shape, e.g., the LO band of the
spectral function looks disconnected. One of the main
reasons of the LO-mode disconnection is that !� curve of
the LO-mode passes through the region where ��ð!Þ
changes abruptly [near Γ point on the Γ–L path at
∼25meV in Fig. 15(c)], whose details are discussed in
Ref. 63. Figure 16 shows the IXS measurement and the
phonon spectral function calculation. The IXS spectrum
shows an asymmetric function shape. The spectral function
has multiple peaks due to the strong anharmonicity. Their
agreement is well confirmed after the phonon spectral
function is smeared by the energy resolution of the IXS
measurement setting.

6. Lattice Thermal Conductivity Calculation

The LTC calculation is one of the most important
applications of the first-principles phonon calculation. In this
section, the LTC value or tensor is denoted by κ since it is a
popular choice and probably it would not be confused with
the label of atoms in the unit cell.

6.1 Relaxation time approximation
In the kinetic theory, LTC is written as33,34)

� ¼ 1

NVc

X
�

C�v� 
 v�	
SMRT
� ; ð48Þ

where 	SMRT
� is the single-mode relaxation time (SMRT), and

C� is the mode heat-capacity defined as

C� ¼
@ħ!�

�
n�ðTÞ þ 1

2

�
@T

¼ kB
ħ!�

kBT

� �2
expðħ!�=kBTÞ

½expðħ!�=kBTÞ � 1�2 : ð49Þ

Equation (48) is obtained as the solution of the Peierls–
Boltzmann equation under the relaxation time approximation
(RTA).31,32,91) C� and v� are computed from the harmonic
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Fig. 16. (Color online) This figure is obtained from Ref. 63 licensed under
CC-BY-4.0. The IXS measurement and calculated phonon spectral function
of KCl at 300K.63) The IXS spectrum was measured at Q ¼
ð2:88 2:93 �2:90Þ and the phonon spectral function was calculated at
q ¼ ð0:097 0:097 0:097Þ. These coordinates are represented with respect to
reciprocal basis vectors of cubic lattice. The solid, dashed-dotted, and dotted
curves show the IXS spectrum, phonon spectral function, and phonon
spectral function smeared by the Lorentzian function with the 1.5meV scale
parameter, respectively. The energy of 1.5meV is the energy resolution of
the IXS measurement setting. Phonon frequency unit of meV is used in this
figure where 1meV–0.24THz.

Fig. 15. (Color online) These figures are obtained from Ref. 63 licensed under CC-BY-4.0. From left, (a) spectral function, (b) imaginary part of self energy,
and (c) real part of self energy of KCl at 300K calculated along the X–Γ–L path. The dashed-dotted curves show the renormalized phonon frequencies that
correspond to !�. The filled circle and diamond symbols show peak positions of the IXS measurement63) and the INS measurement by Raunio and Almqvist,90)

respectively. Phonon frequency unit of meV is used in these figures where 1meV–0.24THz.
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phonon calculation. Employing 	� as 	SMRT
� , Eq. (48) is

calculated immediately.
In Fig. 17, LTCs of rocksalt-type, zincblende-type, and

wurtzite-type compounds calculated at 300K are compared
with the experimental values. The calculations were
performed with the similar computational details in Ref. 38
but GGA of PBEsol60) and NAC by Gonze and Lee15) were
employed. Systematic agreement between calculations and
experiments is observed, which exhibits strong predictability
of the first-principles LTC calculation. The computational
demand of the LTC calculation is non-trivial as explained in
Sect. 5.1. Typically, the computational bottleneck of the LTC
calculation is in the first-principles calculation of forces in
many supercells with different configurations of displace-
ments. When a primitive cell contains large number of atoms,
the calculation of ���0�00 in Eq. (44) can be also a computa-
tional bottleneck due to heavy iteration over combinations of
three atoms in the primitive cell.

Since Eq. (48) is a simple summation over phonon modes,
the result of the LTC calculation is naturally analyzed in
terms of phonon mode. As an example of the analysis, the
LTC calculation performed in Ref. 92 is presented as
follows. In this study, LTCs of SiO2 polymorphs of α-quartz
and α-cristobalite were compared. Both crystal structures are
composed of SiO4 tetrahedra connected by their vertices, but
the connecting manners are different. Although their phonon
DOS look similar as shown in Fig. 18, their calculated
LTCs92) are dissimilar as presented in Table I, where α-
quartz exhibits highly anisotropic κ, whereas α-cristobalite
shows rather isotropic κ.

To discuss phonon mode dependent properties related to
LTC, a DOS-like-plot is often useful. For this purpose, we
define �ð!Þ by

�ð!Þ � 1

N

X
�

���ð! � !�Þ ð50Þ

with

�� ¼ 1

Vc
C�v� 
 v�	�; ð51Þ

so that

� ¼
Z 1

0

�ð!Þ d!: ð52Þ

For the numerical calculation of �ð!Þ, the linear tetrahedron
method is used in phono3py. In Fig. 19(a), �ð!Þ of α-quartz
and α-cristobalite calculated at 300K are presented. We can
see that low frequency phonons at ! < 5THz mostly
contribute to the total LTCs of the both compounds. This is
because phonon lifetimes of lower phonon frequency modes
tend to be longer as shown in Fig. 19(b). Minor difference of
the phonon lifetime distributions between α-quartz and α-
cristobalite is observed. This is attributed mainly to the
difference in their phonon DOS that are shown in Fig. 18.

 1

 10

 100

 1000

 1  10  100  1000

AgBr
AgCl

BaO

CaO

KBr

KClKF

KI

LiBr

LiF

LiH
MgO

NaBr

NaCl

NaF

NaI PbS
PbSe

PbTe

RbBr

RbCl

RbF

RbI

SrO

AlAsAlPAlSb

BN

BP

CdTe

GaAs

GaP

GaSb
InAs

InP

InSb

ZnS

ZnSe

ZnTe

AgI

AlN
BeOGaN

CdS

CuCl

CuBr

CuI

SiC

ZnO

LT
C

 c
al

cu
la

tio
n 

(W
/m

·K
)

LTC experiment (W/m·K)

Zincblende
Rocksalt

Wurtzite

Fig. 17. (Color online) LTCs of rocksalt-type, zincblende-type, and
wurtzite-type compounds at 300K under the relaxation time
approximation. The calculations and experiments are compared.

Wave vector
0 0.5 1X Γ M A Γ Z

Si
O

(b) α-cristobalite

Phonon DOS
(states/THz·f.u.)

L A Γ K M Γ
Wave vector

0

5

10

15

20

25

30

35

Fr
eq

ue
nc

y 
(T

H
z)

0 0.5 1

Si
O

(a) α-quartz

Phonon DOS
(states/THz·f.u.)

Fig. 18. These figures are obtained from Ref. 92 licensed under CC-BY-4.0. Phonon band structures and DOS of (a) α-quartz and (b) α-cristobalite.

Table I. Calculated lattice thermal conductivities κ (W=m-K) of α-quartz
and α-cristobalite at 300K.92)

Space-group type �xx ¼ �yy �zz

α-quartz P3221 4.9 10.7
α-cristobalite P41212 6.4 7.6
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The anisotropy of �ð!Þ in α-quartz is observed clearly. This
means that v� 
 v� is anisotropic in α-quartz. To visualize
v� 
 v�, a function wð!Þ similar to �ð!Þ is defined as

wð!Þ � 1

N

X
�

1

Vc
v� 
 v��ð! � !�Þ: ð53Þ

In Fig. 19(c), wð!Þ of α-quartz and α-cristobalite are
presented. The anisotropy of wð!Þ is more evident in α-
quartz than α-cristobalite. This quantitative analysis is useful,
since the anisotropy is difficult to recognize from the phonon
band structure diagrams of Fig. 18, although the group
velocity is the slope of the band structure.

Phonon mean free path (MFP) is an interesting quantity in
LTC. Under SMRT, the phonon MFP is written as

l� ¼ v�	�: ð54Þ
Integrating �� over the phonon modes whose phonon MFPs
are below a maximum phonon MFP, lmax, we may define
�ðlmaxÞ as

�ðlmaxÞ ¼
Z lmax

0

1

N

X
�

���ðlMFP � l�Þ dlMFP: ð55Þ

The calculated results of Eq. (55) for α-quartz and α-
cristobalite at 300K are shown in Fig. 20. This calculation
was performed using the raw calculation data used in
Ref. 92. The value similar to Eq. (50) may be rather useful,
which is written as

�ðlMFPÞ ¼ 1

N

X
�

���ðlMFP � l�Þ: ð56Þ

This indicates impact to LTC by phonon modes having
specific values of phonon MFPs. The calculated results of
Eq. (56) for α-quartz and α-cristobalite are shown in the inset
of Fig. 20.

6.2 Phonon-isotope scattering
In the phono3py code, scattering rate of a phonon mode by

randomly distributed isotopes is calculated using the second-
order perturbation theory given by Tamura93) as

1

	 iso� ð!Þ ¼
�!2

�

2N

X
�0

�ð! � !�0 Þ
X
�

g�
X
�

W	
��ð�0ÞW��ð�Þ

�����
�����
2

:

ð57Þ
In Eq. (57), g� is the mass variance parameter defined
as

g� ¼
X
i

fi 1 � mi�X
j

fjmj�

0
BB@

1
CCA

2

; ð58Þ

where fi and mi� are the mole fraction and atomic weight
of the ith isotope, respectively. To include phonon-isotope
scattering into LTC, it is a reasonable approximation to
employ the Matthiessen’s rule for SMRT as follows:

1

	total�

¼ 1

	�
þ 1

	iso� ð!�Þ
: ð59Þ

The impact of phonon-isotope scattering is larger for phonon
modes having longer phonon lifetimes. The same calculation
as shown in Fig. 17 was performed including the phonon-
isotope scattering, where atomic weights of elements of
Ref. 94 were used. Figure 21 shows the ratio of LTCs of the
compounds with and without isotope effect.

6.3 Direct solution to linearized phonon Boltzmann
equation

Using a direct solution of the linearized phonon Boltzmann
equation (LBTE) by Chaput,95) LTC is written as
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Fig. 19. These figures are obtained from Ref. 92 licensed under CC-BY-
4.0. Microscopic analyses of LTCs of α-quartz and α-cristobalite. (a) Phonon
mode contributions to LTCs [Eq. (50)] at 300K. (b) Phonon lifetime
distributions at 300K. (c) Visualizations of impact of group velocity to LTCs
[Eq. (53)].
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���0 ¼ 1

4kBT2NVc

X
��0

ħ!�v�;�

sinh

�
ħ!�

2kBT

�ð��1Þ��0
ħ!�0v�0;�0

sinh

�
ħ!�0

2kBT

�;

ð60Þ
where Ω is the collision matrix proposed in Ref. 95:

���0 ¼ ���0
1

	�
þ 36�

ħ2
X
�00

j���0�00 j2 1

sinh

�
ħ!�00

2kBT

�

� ½�ð!� � !0
� � !00

�Þ
þ �ð!� þ !0

� � !00
�Þ þ �ð!� � !0

� þ !00
�Þ�: ð61Þ

Ω is a symmetric positive-semidefinite matrix, and ��1

means the Moore–Penrose inverse of the collision matrix

Ω. To achieve reasonable convergence of LTC with respect
to q-point sampling density, the matrix size of Ω tends to
become large, and its computation of the inversion can
require a huge memory space and computing time. Utilizing
crystal symmetry, the pair of Eqs. (60) and (61) is trans-
formed to a compact form as presented in the same paper by
Chaput.95) The compact collision matrix is given as

~�~q��; ~q0�0�0 ¼ 1ffiffiffiffiffiffiffiffiffiffiffi
g ~qg ~q0

p
X
R2P

R��0�~q�;R~q0�0 ; ð62Þ

where ~q is the wave vector in the irreducible part of BZ, R is
the rotational operation in the crystallographic point group P,
and g ~q is the order of the point group at the wave vector ~q
(little co-group). With ~�, Eq. (60) is written as

���0 ¼ 1

4kBT2NVc

�
X
~q��
~q0�0�0

ħ! ~q�v ~q�;�

sinh

�
ħ! ~q�

2kBT

� ½ ~��1Ið�; �0Þ� ~q��; ~q0�0�0ffiffiffiffiffiffiffiffiffiffiffi
g ~qg ~q0

p ħ! ~q0�0v ~q0�0;�0

sinh

�
ħ! ~q0�0

2kBT

�; ð63Þ

where Ið�; �0Þ is the matrix to expand vectors in the
irreducible BZ to those in the full BZ written as

I ~q��; ~q0�0�0 ð�; �0Þ ¼ �q;q0��;�0
X
R2P

R��R�0�0 þ R�0�R��0

2
: ð64Þ

Note that ~�~q��; ~q0�0�0 ¼ ~�~q��0; ~q0�0� because of general property
of group. This allows to choose the symmetric form
Ið�; �0Þ ¼ Ið�0; �Þ of Eq. (64), by which we get ���0 ¼ ��0�.95)

At least currently, this compact form is essential to achieve
reasonable convergence of LTC under the direct solution of
LBTE for many compounds.

The same calculation as shown in Fig. 17 was performed
under the direct solution of LBTE instead of RTA at 300K as
shown in Fig. 22. The results are compared with those of
RTA. Large increases of LTCs as the ratios are observed for
a few compounds, though most of the compounds exhibit
minor increases of LTCs.

7. Automation of First-principles Phonon Calculations

We should be able to compute more and more phonon
properties utilizing modern computer power. To achieve it,
we want to perform workflow of the first-principles phonon
calculation in an automated fashion. There are different types
of the automation techniques. One may be easy to set up the
system but less scalable. The other may require building a
complicated system but more failure tolerant and scalable
against large data. In either case, the workflow of the first-
principles phonon calculation itself is simple, and its
automation has been already achieved at a certain level.

Two important use-cases of the automated first-principles
phonon calculations are handling many phonon calculations
and executing specific algorithms that involve different types
of calculation codes. The required capabilities for automation
system to perform them are the robustness and systematic
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Fig. 21. (Color online) Ratios of LTCs of the same compounds as those in Fig. 17 at 300K calculated under the relaxation time approximation with and
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data handling. Fortunately, we have several choices of open-
source-software environments to automate scientific com-
puter simulations, which are so-called workflow engines. In
this section, a typical workflow of the first-principles phonon
calculation and its applications performed using workflow
engines are presented.

7.1 First-principles phonon calculation workflow
A typical workflow of the first-principles phonon calcu-

lation with the finite-displacement supercell approach is
outlined as follows:
1. Prepare a crystal structure model of unit cell that is

standardized following a crystallographic convention
2. Relax the geometry of the crystal structure model using

first-principles calculation until residual forces on atoms
become close to zero

3. Create supercells with finite displacements
4. Calculate forces of atoms in the supercells of the step 3

using first-principles calculation
5. Calculate supercell force constants using displacements

of the step 3 and forces of the step 4
6. Calculate phonon properties from the supercell force

constants of the step 5
This workflow is illustrated in Fig. 23. It is important that
the input crystal structure model has been standardized in
terms of crystal symmetry96) for the later systematic handling
of the calculation data. Usually, this workflow is performed
by using two or three different calculation codes: first-
principles calculation code, phonon calculation code, and
optionally force-constants calculation code. For the harmonic
phonon calculation, the first-principles calculations are
executed on a powerful computer such as supercomputer,
computing cluster, etc. and the other calculations are often
processed on a normal personal computer. For the LTC
calculations, all the calculation steps may be performed on a
powerful computer.

7.2 Automated phonon calculation workflow
Currently, workflows for automation of the phonopy and

phono3py codes are provided as the AiiDA plugins.97)

AiiDA98,99) is an environment that provides workflow engine
and flexible database system. The latter stores not only the
data but also the flows of processes and data. As an
example, the phonopy workflow graph of a harmonic
phonon calculation auto-generated by AiiDA is shown in
Fig. 24. Inside the phonopy workflow, the VASP work-
flows100) are called to run the first-principles calculations to
obtain forces of atoms in supercells for supercell force
constants calculation and Born effective charges and dielec-
tric constant tensor required for NAC. Using these
intermediate data, phonon properties are calculated after
the supercell force constants calculation. The final results are
attached to end points of the phonopy workflow as the data
nodes.

All the intermediate data inside the AiiDA workflow are
stored in the AiiDA database as immutable data, i.e., those
data are not allowed to be modified or removed once they are
created. The dataflow has to be designed to be an acyclic
directed graph. These restrictions of the AiiDA workflow
help the automated calculation reproducible and the history
traceable along the process and data flows.
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Fig. 23. (Color online) An illustration of workflow of the first-principles
phonon calculation with the finite-displacement supercell approach.
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7.3 Iteration of harmonic phonon calculations
Like that the VASP workflow is called in the phonopy

workflow of Fig. 24, the phonopy workflow can be also
called by another workflow. The dotted line connecting from
the step 6 to 3 in Fig. 23 means iteration of the phonopy
workflow by calling itself using the phonon calculation
output as the input of the next phonon calculation. Since the
cyclic data flow is prohibited in AiiDA, this algorithm is
implemented as another workflow that iterates the phonopy
workflow processes as shown in Fig. 25(a).

This workflow was used to study strong anharmonicity of
KCl and NaCl in Ref. 63 to include finite temperature effect
in the supercell force constants. In this study, random

displacements were sampled in phonon coordinates following
harmonic oscillator distribution function at 300K, and
displacements were introduced in the supercells. Harmonic
supercell force constants were calculated by least-squares
fitting using the ALM code.46) Since finally obtained
supercell force constants are considered equivalent to those
of SSCHA,41) this procedure was iterated until SSCHA free
energies became converged. The renormalized phonon band
structure of NaCl is shown in Fig. 25(b). Increasing temper-
atures, atoms vibrate with larger amplitude and hit the
anharmonic potential energy surface. In Fig. 26, distributions
of SSCHA random displacement distances of atoms in NaCl
at 300K are presented. Most of displacement distances are far
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larger than 0.03Å that was used to calculate harmonic
phonon band structure shown in Fig. 25(b). For the
comparison, an NVT MD calculation using the VASP code
was performed and it was confirmed that similar distributions
of displacements were generated. This MD calculation used
the same 512 atoms supercell with loose convergence
parameters.

7.4 Execution of many phonon calculations
Many crystal structures can be obtained through materials

or crystallographic database services such as the Materials
Project,101) the Crystallography Open Database (COD)102–108)

and the theoretical COD.109) It is straightforward to apply the
automated phonon calculation to high-throughput phonon
calculation of crystal structures obtained from these database.

Using an automated phonon calculation, Togo et al.
developed a phonon calculation database,110) where the
first-principles phonon calculations of more than 10000
crystal structures were performed using the phonopy and
VASP codes. For the high-throughput first-principles phonon
calculation, initial crystal structures were obtained from the
Materials Project via the materials application programming
interface using the pymatgen code.101,111) Since the Materials
Project database provides not only the crystal structures but
also the calculated electronic structure information, utilizing
the materials information, non-metallic and non-magnetic
crystals were selected. Crystal structures having primitive
cells that contain large number of atoms were excluded from
the list of the target crystal structures since large computa-
tional resource required by them was considered unafford-
able.

The calculated data that can be used as the input of the
phonopy code are distributed at the phonon calculation
database. It is planned to migrate the phonon calculation
database to the other materials data repository service

because of the difficulty of maintaining current database
server. The raw output data that were generated using an
obsolete workflow engine112) will be exported to the AiiDA
database to open the data at the Materials Cloud.113)

7.5 Recursive search of phase transition pathways
An automated phonon calculation was used for the

structural transition pathway search. In the study of Cu in
Ref. 114, different structural phases were related by phonon
modes that exhibit structural instabilities as shown in Fig. 27.
The implemented algorithm is straightforward, where the
phonon calculations were used to examine dynamical
stabilities of crystal structures. Choosing a crystal structure
that has high crystal symmetry (SC in Fig. 27), when
imaginary phonon frequencies are found as shown in the
inset of Fig. 27, the symmetry of the crystal structure is
lowered by introducing atomic displacements corresponding
to the eigenvector. Since the imaginary phonon frequency
indicates negative curvature of the potential energy surface
along the phonon coordinate, with a little push in the phonon
coordinate, the crystal structure starts to relax. The geometry
of the crystal structure is relaxed by the first-principles
calculation along the symmetry constrained pathway [e.g.,
SC → Pmma → simple hexagonal (SH)]. Next, dynamical
stability of the relaxed crystal structure (SH) is examined by
the phonon calculation. When a phonon calculation exhibits
multiple imaginary phonon frequencies, the multiple routes
(e.g., three branches from SC) are pursued. This procedure is
repeated recursively until all the crystal structures at the end
points become dynamically stable. An automated phonon
calculation workflow was developed for this study to perform
this algorithm. Since this workflow was implemented on an
obsolete workflow engine,112) it is planned to re-implement it
for AiiDA.
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The inset shows phonon band structure of SC Cu. The SC structure is relaxed
following eigenvectors of phonon modes that exhibit imaginary phonon
frequencies at commensurate points. Dynamical stabilities of crystal
structures obtained after the relaxations (SH, ω, BCC, ⋯) are examined by
the first-principles phonon calculation. The same procedure is repeated
recursively until all relaxed crystal structures at end points are found to be
dynamically stable. In this algorithm, not only crystal structures are explored,
but also the structural relationships among the crystal structural phases are
determined.
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8. Summary

The first-principles phonon calculation with the finite
displacement supercell approach implemented in the the
phonopy and phono3py codes were reviewed. Harmonic,
quasi-harmonic, and anharmonic phonon calculations were
explained using the formulae and their calculation examples.
To utilize modern computer power effectively, automation
of the phonon calculation became essential. Therefore, the
workflow of the first-principles phonon calculation was
briefly described. A few applications of the automated
phonon calculation workflow were presented. The raw data
of some calculation examples will be opened in the public
domain, which will be informed at the phonopy’s website.
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