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ABSTRACT
Complex materials design is often represented as a black-box combinatorial optimization
problem. In this paper, we present a novel python library called MDTS (Materials Design using Tree
Search).Our algorithm employs a MonteCarlo tree search approach, which has shown exceptional
performance in computer Go game. Unlike evolutionary algorithms that require user intervention
to set parameters appropriately, MDTS has no tuning parameters and works autonomously in
various problems. In comparison to a Bayesian optimization package, our algorithm showed
competitive search efficiency and superior scalability. We succeeded in designing large Silicon-
Germanium (Si-Ge) alloy structures that Bayesian optimization could not deal with due to
excessive computational cost. MDTS is available at https://github.com/tsudalab/MDTS.
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1. Introduction

Complex materials design is a key topic in materi-
als science and engineering. The design of a complex
materials’ structure that meets certain criteria is often
formulated as the problem of finding the optimal so-
lution from a space of candidates [1,2]. A common
problem in solid-state materials design is the structure
determination of a substitutional alloys problem [3,4],
where atoms or vacancies are assigned to positions in
a crystal structure. For example, Ju et al. [4] recently
solved the optimal assignments of Silicon (Si) and
Germanium (Ge) to a certain crystal structure that achi-
eves minimum and maximum thermal conductance.

To accelerate the materials design process, several
experimental design algorithms have been used to find
the optimal structure with as few experiments as possi-
ble (Figure 1). Experimental design is an iterative pro-
cess for selecting the next candidates for experiments,
where the outcome of the experiments are exploited
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for making further choices. In many cases, simula-
tors are substituted to experiments, e.g. first-principle
calculations. In earlier studies, quantitative structure-
property relationship (QSAR)modelsweremainly used
[5]. Recently, Bayesian optimization [6], a technique to
select promising candidates using Bayesian learning,
has been proven as an effective tool in materials design
[1,2,4,7–9]. The difference between Bayesian optimiza-
tion methods and traditional QSAR models is that the
uncertainty of prediction is quantified as predictive
variance: the candidates are scored by an acquisition
function that takes into account both predicted merit
and uncertainty. Bayesian optimization is very effective
in finding optimal structures but has problems with
scalability, as the acquisition function has to be ap-
plied to all candidates. Evolutionary algorithms such
as genetic algorithms [10,11] are more scalable, but
havemany parameters, such as crossover andmutation
rates, that must be tuned properly to obtain the best
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Figure 1.Materials design by an experimental design algorithm.
The process starts with an initial random design. The algorithm
selects the next candidates for experiments, where the outcome
of the experiments are exploited by the algorithm to make
further selection.

performance. In most cases, in materials design, the
amount of data available a priori is very limited, so
tuning parameters using data may not be possible.

In this paper, we propose a novel python library
called Materials Design using Tree Search (MDTS).
MDTS solves structure determination of substitutional
alloys with composition constraints using a Monte
Carlo tree search [12], a guided-randombest-first search
method that showed significant success in computerGo
[12,13]. Our library is highly scalable and does not have
any tuning parameter.

In experiments, we applied MDTS and an efficient
Bayesian optimization implementation [7] to a Si-Ge
alloy interface design between two Si leads [4]. The local
force field (bonding characteristics) in the structure can
change due to substitution. However, in this demon-
stration case, we did not consider structure relaxation
because the force constants of Si and Ge are known to
be transferable [14]. On the other hand, there are ways
to include the change in the local force constants and
the current method can be simply used to incorporate
such an effect [15]. The total computational time is
decomposed into design time and simulation time. The
former represents the selection of the next candidates
and the latter simulator time. In terms of the number of
calculations to find the optimal solution, Bayesian op-
timization was better due to its high prediction ability.
However, MDTS was comparable or better in terms of
total computational time, because Bayesian optimiza-
tion takes exponential design time with respect to the
number of atoms.MDTS is a practical tool thatmaterial
scientists can easily deploy in their own problems and
has the potential to become a standard choice.

2. Method

Consider a black-box function, f (x), where x is a vector
of discrete variables x ∈ {0, 1, k − 1}N . We aim to find
the optimal solution x∗ that maximizes f (x) subject to
composition constraints

N∑
�=1

I(x� = j) = nj, j = 0, . . . , k − 1 (1)

where I is the indicator function that returns one if
the given condition is satisfied and zero otherwise. The

constant ni indicates the number of variables with value
i. Notice that

∑k−1
j=0 nj = N . In an atom assignment

problem, x corresponds to atom types and f (x) is a
target property evaluated, for example, through first-
principles calculations.

Monte Carlo tree search (MCTS) employs a search
tree, where nodes at the �th level correspond to value
assignment to x� (Figure 2). A path from the root to a
node at level � corresponds to a partial solution with
respect to x1, . . . , x�. In the first round of MCTS, only
the root node exists and then the search tree is gradually
constructed. To obtain a full solution x, a complete
path to a leaf node at the Nth level is necessary. One
interesting feature of MCTS is that only a shallow tree
is built and the complete paths are obtained via ran-
dom playouts [12]. A ‘playout’ creates a solution by
starting from a node and determining the remaining
variables randomly. The random playout allows us to
explore a large candidates space without learning from
data. Once a solution has been obtained by a playout,
the black-box function f (x) is evaluated and recorded.
By combining tree expansion, backtracking and play-
outs, a large candidate space can be searched systemati-
cally. When a predetermined number of calculations is
reached, the best solution so far is returned as the final
result.

Each node i contains three variables: the visit count
vi represents the number of visits in the search process;
fi denotes the immediate merit of node i evaluated by
playout; and the cumulative merit wi is defined as the
sum of all direct merit for all descendant nodes includ-
ing itself. The Upper Confidence Bound (UCB) score
[12] of a node is an index indicating how promising it
is to explore the subtree under the node. It is defined
based on the cumulative merit and the number of visits
as follows:

ui = wi

vi
+ C

√
2 ln vparent

vi
(2)

where C is the constant to balance exploration and
exploitation and vparent is the visit count of the parent
node. Whenever a new node is added, the variables are
initialized as

vi = wi = fi = 0, ui = ∞ (3)

Each round of MCTS consists of: selection, expan-
sion, simulation and back propagation (Figure 2). In
the selection step, the tree is traversed from the root to
a leaf by choosing the child with the maximum UCB
score at each branch. If there is a tie, the winning child
is chosen randomly. Let i denotes the identified leaf, �
the level of the node i, x1, . . . , x� the partial solution
corresponding to the path from the root to i. In the
expansion step, children nodes are added under the
node i. If the number of atoms j reaches the limit
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Figure 2.Monte Carlo tree search (MCTS) for a binary atom assignment problem. The candidate space is represented as a tree where
each node represents a possible atom assignment. One round of MCTS consists of four steps, Selection, Expansion, Simulation and
Backpropagation. In the selection step, a promising leaf node is chosen by following the node with the best UCB score in each
branch. The expansion step adds a number of children nodes to the selected one. In simulation, solutions are created by random
playouts from the expanded nodes. The backpropagation step updates nodes’ information along the path back to the root.

already, i.e.
∑�

l=1 I(xl = j) = nj the jth child is not
added. In the simulation step, a playout is performed
from each of the added children. Notice that the ran-
dom assignments are made such that the composition
constraints are satisfied. With the solutions obtained, a
simulator is applied to evaluate f (x) and store the value
as the immediate merit of the corresponding nodes.
Finally, in the back propagation step, the visit count of
each ancestor node of i is incremented by one and the
cumulative value is also updated to keep consistency.

The value of C crucially affects the performance
of MDTS. According to the analysis by Kocsis and
Szepesvári [16], to guarantee the convergence to the
optimal solution,C should be proportional to the range
between zmax and zmin, i.e. themaximumandminimum
immediate merit observed in downstream nodes. Ad-
justing C, either statically or dynamically, is a standard
technique for applying MCTS (as shown in [12]). Fol-
lowing a similar idea, MDTS controls C adaptively at
each node as follows:

C =
√
2J
4

(zmax − zmin) (4)

where J is a meta-parameter initially set to one and
increased whenever the algorithm encounters a ‘dead-
end’ leaf, to allowmore exploration. At a dead-end leaf,
the number of possible structures narrows to one. This
happens when the numbers of k − 1 atoms reaches the

limit. J is updated as J ← J +max{T−tT , 0.1}, where T
is the total number of candidates to be evaluated and
t is the number of candidates for which the black-box
function is evaluated. See supplemental material for the
algorithm.

3. Experiments and results

In this section, we compare MDTS to a Bayesian opti-
mization package called COMBO [7] in a binary atom
assignment problem (notice that MDTS is able to han-
dle multiple atom types assignment problems). The
performance of MDTS depends on the variable order-
ing in x. The following three options were tried: direct
(left-to-right), reversed (right-to-left) and random.

MDTS and COMBOwere applied to design optimal
Si-Ge alloy (Si:Ge=1:1) interfacial structures (Figure 3)
with both minimum and maximum thermal conduc-
tance [4]. Materials with both minimum (e.g. thermo-
electric materials) and maximum (e.g. CPU cooling)
interfacial thermal conductance have potential appli-
cations. As shown in Figure 3, the system consists of
an interface region between two Si leads with infinite
thickness. In the interface, there are N positions filled
either by Si or Ge. The number of atoms of each type is
constrained to N/2. The number of possible structures
grows rapidly as the number of atoms N increases.
For example, at 14, 20 and 26 atoms, the number of
possible structures is 3432, 184,756 and 10,400,600,

Figure 3. Si-Ge interfacial structure between two Si leads. In this case, the interface region is made up of 16 atoms.
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(a)

(b)

(c)

Figure 4. Comparison betweenMDTS and Bayesian optimization (BO) in finding the structure with minimum andmaximum thermal
conductance. (a) Design time for choosing a candidate structure against the number of atoms in the interfacial structure N. The
time for BO grows exponentially as N increases. Results averaged over 10 runs, each for 30 solutions. (b) The fraction of optimal
structure discovery (i.e. success rate) for both minimum and maximum thermal conductance in 100 runs against the number of
thermal conductance calculations. The number of atoms is 16 (N = 16). BO takes fewer calculations to find the optimal structure.
(c) Optimal observed thermal conductance (minimum and maximum) against total computational time including both design and
simulation time (N = 22). The result is averaged over 10 runs. Here, the efficiency of the twomethods is comparable. For N < 22, BO
was more efficient and MDTS was more efficient for N > 22.

respectively. The thermal conductance was computed
using the atomistic Green’s function implemented in
theATK-Classical Simulator ofAtomistixToolKit (ATK)
[17,18]. SiGe Tersoff [19,20] potential was used to de-
scribe the atom interactions. The size of the supercell in
the transverse direction (perpendicular to the direction
of heat conduction) is 1 unit cell, i.e. 5.43 Å × 5.43 Å,

and periodic boundary conditions were used. See Ref.
[4] for further details.

Since the process of simulation-based structure op-
timization involves an experimental design algorithm
and a simulation algorithm, the total computational
time is divided into two parts: design time and simula-
tion time. The design time per structure against the
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number of atoms is shown in Figure 4(a). Bayesian
optimization shows an exponential increase in design
time, because it needs to compute a score for every
candidate structure. On the other hand, the design in
MDTS takes only a tree traversal, whose computational
cost is scarcely affected by the number of atoms. Figure
4(b) shows the fraction of optimal structure discovery
over 100 runs (i.e. success rate) for both minimum and
maximum thermal conductance against the number of
thermal conductance calculations at N = 16. Bayesian
optimization required a smaller number of calculations
to achieve the same level of success rate due to its
sophisticated prediction algorithm. Nevertheless, the
performance of MDTS was better than random search,
indicating its substantial capability of learning from
data. Among the three variable orderings ofMDTS, the
reversed order was best. Random order performance
was lowest in this particular case, likely because the
existence of neighbourhood relations may be crucial
for the optimal thermal conductance. Despite better
learning capability, the advantage ofBayesianoptimiza-
tion in total computational time is rapidly wiped out,
as N increases, because of the exponentially increasing
design time. At N = 22, the speed of thermal conduc-
tance minimization and maximization of MDTS and
Bayesian optimization is comparable as shown in Fig-
ure 4(c). At N = 26, however, Bayesian optimization
becomes significantly slower: it takes about 15 times
more time than theN = 22 case. This result shows that
MDTS should be chosen over Bayesian optimization
unless the problem size is sufficiently small.

4. Conclusion

In this paper, we presented MDTS: a materials design
library based on Monte Carlo tree search. MDTS is an
open source project and interested researchers can join
in the development of MDTS. The balance between
design time and simulation time is an important factor
in automaticmaterials design. Efficient designmethods
including MDTS are most useful when the simulation
time is short. The long design time of a more inef-
ficient machine-learning based approach can appear
less problematic when the simulation time is longer. In
futurework, itwould benecessary to pursue an adaptive
approach that can balance optimality and design time
in a variable manner. Additionally, we plan to make
MDTS more customizable for diverse materials design
problems with possibly different kinds of constraints.
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