
Tutorial for conditional generative adversarial network 
Xiaoyang Zheng 1,2, Ikumu Watanabe 1,2 

1 Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8573, 
Japan 

2 Research Center for Structural Materials, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba 
305-0047, Japan 

Emails: ZHENG.Xiaoyang@nims.go.jp (X.Z.); WATANABE.Ikumu@nims.go.jp (I.W.) 

 

Abstract 

This tutorial aims to give an introduction of how to use a deep generative model, conditional 
generative adversarial network (CGAN). The CGAN can be used for the inverse design of 2D and 3D 
microstructures with target properties. The CGAN is trained with supervised learning using a 
labeled dataset. The dataset consists of a large number of geometries and their corresponding 
properties (e.g., elastic moduli). After training, the CGAN can generate a batch of geometries using 
target properties at inputs. In our previous two papers, we have demonstrated how to use the 
CGAN for the inverse design of 2D auxetic metamaterials and 3D architected materials [1,2]. We 
hope this tutorial can be useful for those who are interested in the inverse design problems of 
microstructures.  

 

1. Introduction 

Figure 1. Forward design and inverse design 

mailto:ZHENG.Xiaoyang@nims.go.jp
mailto:WATANABE.Ikumu@nims.go.jp


Forward design is a conventional approach to design microstructures, such as architected 
materials, mechanical metamaterials, lattices, etc. This forward design approach follows a general 
process: a structure is created firstly and then its mechanical properties are investigated by finite 
element simulation or mechanical testing (Figure 1). The mechanical properties of designed 
materials will be only known after time-consumingly simulations or experiments. In contrast, deep 
generative models, such as GAN, enable inverse design of microstructures. In inverse design, 
microstructures can be automatically generated by inputting target properties to a deep 
generative model, which outputs corresponding geometries of microstructures.  

Figure 2. Architecture of CGAN 

In our previous studies, we proposed an improved deep generative model, CGAN, for the inverse 
design of 2D auxetic metamaterials and 3D architected materials [1,2]. The CGAN is composed of 
three neural network structures: a generator, a discriminator, and a solver (Figure 2). The 
generator is trained to generate the realistic geometries from latent variables (multivariate normal 
distribution) and user-defined labels (target properties, e.g., elastic moduli), and simultaneously 
aims to deceive the discriminator and the solver. The discriminator is trained to distinguish 
geometries produced by the generator from the real dataset. The solver is trained to predict the 
properties of a given geometry. CGAN is optimized by a minimax game in the following equations: 

𝜃𝜃�𝐷𝐷 = arg min
𝜃𝜃𝐷𝐷

{𝐿𝐿𝐷𝐷�𝑡𝑡𝐷𝐷,𝐷𝐷(𝐗𝐗;𝜃𝜃𝐷𝐷)� + 𝐿𝐿𝐷𝐷(𝑢𝑢𝐷𝐷,𝐷𝐷(𝐺𝐺(𝐙𝐙,𝐋𝐋;𝜃𝜃𝐺𝐺);𝜃𝜃𝐷𝐷))}   (1) 

𝜃𝜃�𝐺𝐺 = arg max
𝜃𝜃𝐷𝐷

{𝐿𝐿𝐷𝐷�𝑢𝑢𝐷𝐷,𝐷𝐷(𝐺𝐺(𝐙𝐙,𝐋𝐋; 𝜃𝜃𝐺𝐺);𝜃𝜃𝐷𝐷)� − 𝛼𝛼 ∙ 𝐿𝐿𝑆𝑆(𝐿𝐿, 𝑆𝑆(𝐺𝐺(𝐙𝐙,𝐋𝐋; 𝜃𝜃𝐺𝐺);𝜃𝜃𝑆𝑆))}   (2) 

𝜃𝜃�𝑆𝑆 = arg min
𝜃𝜃𝑆𝑆

{𝐿𝐿𝑆𝑆�𝐿𝐿, 𝑆𝑆(𝐗𝐗;𝜃𝜃𝑆𝑆)�}   (3) 

Where 𝜃𝜃𝐷𝐷, 𝜃𝜃𝐺𝐺, 𝜃𝜃𝑆𝑆 are sets of parameters of the discriminator, generator, and solver, respectively. 
D, G, and S denotes the discriminator, generator, and solver, respectively. 𝐗𝐗 ∈ ℝ𝑛𝑛×𝑝𝑝 is the training 
dataset (vectors of auxetic metamaterials), 𝐋𝐋 ∈ ℝ𝑛𝑛×𝑙𝑙 is the labels of the dataset X (i.e., Young’s 
moduli and Poisson’s ratios), and 𝐙𝐙 ∈ ℝ𝑛𝑛×𝑙𝑙 is latent variables from a multivariate normal 
distribution during each iteration. 𝐿𝐿𝐷𝐷 is a loss function (binary cross-entropy function) for the 
discriminator. 𝑡𝑡𝐷𝐷 and 𝑢𝑢𝐷𝐷 are target labels and generally set at as one and zero, respectively. 

(c

Sample generation
Generator object
Discriminator object
Solver object

G(Z, L; θG) X

Z (Noise) L (labels)
Poisson’s ratio
Young’s modulus

L (labels)
Poisson’s ratio
Young’s modulus

Real Fake Real

Generator

Solver Discriminator



However, we apply label smoothing technique for the target labels: 𝑡𝑡𝐷𝐷 is replaced with a random 
number between 0.7 and 1.2, and 𝑢𝑢𝐷𝐷 is replaced with a random number between 0 and 0.3. The 
moderating weights, 𝛼𝛼, determines how much the generator focuses on the training of input 
labels, and is set to be 0.1 in our study. 

The deep learning calculations are performed using TensorFlow. Adam optimizer with learning 
rate of 0.0001 and β1 of 0.5 is used to train the model. The batch size for training is set to be 32. 
The detailed network structures used in this study are provided in Tables S1–S3. In short, the used 
layers include 2D convolutional layer, 2D transposed convolutional layer, 2D max pooling, fully 
connected layer, batch normalization, and dropout, and the used activation functions include 
leakyRELU and tanh. Note that circular padding is used in 2D convolutional layer and 2D 
transposed convolutional layer in order to keep and identify the periodicity of the patterns.  

Note that before using the CGAN, you need to prepare a labeled dataset consisting of 2D 
geometries and their corresponding properties (e.g., elastic moduli). The 2D geometries are 
represented using 2D images with shape of [b, 256, 256] and the properties are represented by 
two values with shape of [b, 2]. The letter “b” means the total number of geometries. The total 
number of geometries varies case by case, depending on the complexity and type of the 
geometries. In generally, the bigger the dataset, the better performance the training result. In our 
previous studies, we used 100,000 datapoints for 2D case and 10,000 datapoints for 3D case. The 
most convenient way is to generate geometries using code-based CAD modeling and calculate 
their properties using finite element simulations. 

2. Procedures of CGAN training  
2.1 Solver training 
As the solver is independent of the generator and discriminator, we firstly train the solver with 
supervised learning. Follow the steps below: 

a. Open solver.py with, e.g., PyCharm 
b. Change the source file in line 178 dataset_matrixes = 

np.load("yourdataset_geometries.npy"). The shape of “yourdataset_geometries.npy” 
should be [b,256,256]. b means the total number of geometries, and 256 means the 
height and width of a geometry image. “yourdataset_geometries.npy” consists of 0s and 
1s, where 0 represents void part and 1 represents solid part. 

Note that the dataset will be divided with 80% for training and 20% for testing. (lines 182-185)  

The batch size is set to 32, and training epoch is 200. 

The comparison between the real and predicted values is plotted using line 221. 

The performance is investigated using the mean square error (MSE) of testing dataset using line 
243. 



The check points (trained weights and biases) are saved using line 251. 

The check points will be used to train the generator and discriminator. 

 

2.2 Generator and discriminator training 
After training the solver, we can use the saved weights of the solver to train the generator and 
discriminator. Follow the steps below: 

a. Open CGAN_main.py with, e.g., PyCharm 
b. Change the source file in line 292 dataset_matrixes = 

np.load("yourdataset_geometries.npy"). The shape of “yourdataset_geometries.npy” 
should be [b,256,256]. b means the total number of geometries, and 256 means the 
height and width of a geometry image. “yourdataset_geometries.npy” consists of 0s and 
1s, where 0 represents void part and 1 represents solid part. 

c. Change the source file of saved weights in line 307 
solver.load_weights(r"/ckpt/solver_199.ckpt") 

d. Change the limit of your dataspace in lines 289 and 290. For example, if your dataspace 
covers a square of [0,1], you can use current one. If not, e.g., a circle or triangle shape, you 
need to change the way to sample a datapoint from your dataspace. 

Note that the loss functions and MSE will be saved using lines 374-377. 

The weighs of the generator and the discriminator will be saved using lines 380 and 381. 

 

2.3 Using trained CGAN for inverse design 
After training the solver, generator, and discriminator, we can use the saved weights of the solver 
and generator for the inverse design. Follow the steps below: 

a. Open generate_geometies_using_trained_cgan.py with, e.g., PyCharm 
b. Change the source file of saved weights of generator in line 145 

generator.load_weights(r'ckpt/generator_199.ckpt') 
c. Change the source file of saved weights of solver in line 147 

solver.load_weights(r"/ckpt/solver_199.ckpt") 
d. Change your target property for the condition in line 158 

Note that the comparison between the input and output values will be save in the form of figures 
using line 171. The images of the generated 2D geometries will be saved using line 173. 

 



3. Conclusions 
We give a tutorial of how to use CGAN for the inverse design of 2D geometries. After suitable 
training, the CGAN can take target properties as inputs and output corresponding 2D geometries. 
If you would like to use CGAN for the inverse design of 3D geometries, you can refer our latest 
paper [2], in which we proposed a 3D-CGAN that has a similar architecture with CGAN. If you meet 
any problems or have any comments, just feel free to contact us via emails. Hope you can enjoy 
our codes. 

Reference 
1. Zheng X, Chen TT, Guo X, Samitsu S, Watanabe I. Controllable inverse design of auxetic 

metamaterials using deep learning. Materials & Design. 2021 Dec 1;211:110178. 
2. Zheng X, Chen TT, Jiang X, Naito M, Watanabe I. Deep-learning-based inverse design of 

three-dimensional architected cellular materials with the target porosity and stiffness 
using voxelized Voronoi lattices. Science and Technology of Advanced Materials. 2023 Dec 
31;24(1):2157682. 

Table S1: Network architecture of generator. 

Description Kernel size Resampling Input shape Output shape 

Concatenate(Z, L) - - 128+2 130 

Fully connected + Batch Normalization + Reshape - - 130 4×4×512 

2D Transposed convolution + Batch Normalization + Leaky ReLU 4×4 Up 4×4×512 8×8×256 

2D Transposed convolution + Batch Normalization + Leaky ReLU 4×4 Up 8×8×256 16×16×128 

2D Transposed convolution + Batch Normalization + Leaky ReLU 4×4 Up 16×16×128 32×32×64 

2D Transposed convolution + Batch Normalization + Leaky ReLU 4×4 Up 32×32×64 64×64×32 

2D Transposed convolution + Batch Normalization + Leaky ReLU 4×4 Up 64×64×32 128×128×16 

2D Transposed convolution 4×4 Up 128×128×16 256×256×1 

Tanh - - 256×256×1 256×256×1 

 

Table S2: Network architecture of discriminator. 

Description Kernel size Resampling Input shape Output shape 

2D convolution + Leaky ReLU + Dropout 4×4 Down 256×256×1 128×128×16 

2D convolution + Leaky ReLU + Dropout 4×4 Down 128×128×16 64×64×32 

2D convolution + Leaky ReLU + Dropout 4×4 Down 64×64×32 32×32×64 

2D convolution + Leaky ReLU + Dropout 4×4 Down 32×32×64 16×16×128 

2D convolution + Leaky ReLU + Dropout 4×4 Down 16×16×128 8×8×256 

2D convolution + Leaky ReLU + Dropout 4×4 Down 8×8×256 4×4×512 

Flatten - - 4×4×512 8192 

Fully connected - - 8192 1 



Table S3: Network architecture of solver. 

 Description Kernel size / pool size Resampling Input shape Output shape 

Unit 1 

2D convolution 3×3 - 256×256×1 256×256×16 

2D convolution 3×3 - 256×256×16 256×256×16 

2D Max pooling 2×2 Down 256×256×1 128×128×16 

Unit 2 

2D convolution 3×3 - 128×128×16 128×128×32 

2D convolution 3×3 - 128×128×32 128×128×32 

2D Max pooling 2×2 Down 128×128×32 64×64×32 

Unit 3 

2D convolution 3×3 - 64×64×32 64×64×64 

2D convolution 3×3 - 64×64×64 64×64×64 

2D Max pooling 2×2 Down 64×64×64 32×32×64 

Unit 4 

2D convolution 3×3 - 32×32×64 32×32×128 

2D convolution 3×3 - 32×32×128 32×32×128 

2D Max pooling 2×2 Down 32×32×128 16×16×128 

Unit 5 

2D convolution 3×3 - 16×16×128 16×16×256 

2D convolution 3×3 - 16×16×256 16×16×256 

2D Max pooling 2×2 Down 16×16×256 8×8×256 

Unit 6 

2D convolution 3×3 - 8×8×256 8×8×384 

2D convolution 3×3 - 8×8×384 8×8×384 

2D Max pooling 2×2 Down 8×8×384 4×4×384 

Unit 7 

2D convolution 3×3 - 4×4×384 4×4×512 

2D convolution 3×3 - 4×4×512 4×4×512 

2D Max pooling 2×2 Down 4×4×512 2×2×512 

Unit 8 

2D convolution 3×3 - 2×2×512 2×2×512 

2D convolution 3×3 - 2×2×512 2×2×512 

2D Max pooling 2×2 Down 2×2×512 1×1×512 

 Flatten + Fully connected - - 1×1×512 256 

 Fully connected   256 128 

 Fully connected - - 128 2 

 


	1. Introduction
	2. Procedures of CGAN training
	2.1 Solver training
	2.2 Generator and discriminator training
	2.3 Using trained CGAN for inverse design

	3. Conclusions
	Reference

