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• DNNs were used to estimate biaxial
stress-strain curves of aluminum alloy
sheets.

• Pole figure images and 3D orientation
maps were explored as input data.

• DNNs were as accurate as numerical
biaxial tensile tests, but much faster.

• A new approach to virtual data
generation for material modeling was
demonstrated.
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To improve the accuracy of a sheet metal forming simulation, the constitutive model is calibrated using results
from multiaxial material testing. However, multiaxial material testing is time-consuming and requires special-
ized equipment. This study proposes two different deep neural network (DNN) approaches, a two- and three-
dimensional convolutional neural network (DNN-2D and DNN-3D), to efficiently estimate biaxial stress-strain
curves of aluminum alloy sheets from a digital image representing the sample's crystallographic texture. DNN-
2D is designed to estimate biaxial stress-strain curves from a digital image of {111} pole figure, while DNN-3D
estimates the curves from a 3D image of the texture. The twoDNNswere trained using synthetic texture datasets
and the corresponding biaxial stress-strain curves obtained fromcrystal plasticity-based numerical biaxial tensile
tests. The accuracy of the two trained DNNs was examined by comparing the results from that of the numerical
biaxial tensile tests. It was observed that both the DNNs could estimate biaxial stress-strain curves with high ac-
curacy. Though DNN-3D provides with a better estimation than DNN-2D, it displays lower computational effi-
ciency. Thus, the two DNNs and their training procedures offer a new and efficient method to provide virtual
data for material modeling.

© 2020 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

Commercial finite element simulation software is widely used in in-
dustry to simulate sheet metal forming process [1,2]. Many phenome-
nological constitutive models based on yield functions have been
developed and incorporated into commercial finite element software
the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Fig. 1. {111} pole figure of crystallographic texture in a 5182-O aluminum alloy sheet
(a) measured using EBSD and (b) illustrated as a density plot.
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over the past decades [3–8]. The precise prediction of defects (e.g. frac-
ture and springback) using sheet metal forming simulations relies on
the accuracy of the yield function, the constitutivemodel, and its param-
eters (i.e. material model which should reproduce the actual plastic de-
formation behavior). Thematerialmodel can be calibrated using various
multiaxial material testingmethods [9] that measures the plastic defor-
mation behavior of sheet metals under multiaxial stress conditions like
the hydraulic bulge [10], stack compression [11], biaxial tensile test
(cruciform sample) [12–14], and multiaxial tube expansion tests [15].
The calibrations are generally performed based on the contour of
equal plastic work and the direction of incremental plastic strain rates
measured by multiaxial material tests. Therefore, acquisition of experi-
mental data bymultiaxial material tests is key to obtain highly accurate
sheet metal forming simulation results [16–18].

The crystal plasticity finite elementmethod (CPFEM) is another pop-
ular method for simulating the plastic deformation behavior of sheet
metals during metal forming process [19,20]. Previous studies of sheet
metal forming simulations using CPFEM have investigated deep draw-
ing and spherical punch forming [21–26]. However, CPFEM-based
sheet metal forming simulations have not been widely adopted in the
industry due to the high computational demand of themethod, despite
the use of high-performance computers.

Crystal plasticity-based simulations can also be used in virtual mate-
rial testing [27] and virtual laboratory [28]. In virtual material testing, a
material model is calibrated using the results from crystal plasticity-
based simulations instead of time-consuming experimental multiaxial
material tests. Hence, virtual material testing has been widely applied
to calibrate material models of sheet metals [27,29–36]. However, cal-
culating the contour of equal plastic work and the yield locus using vir-
tualmaterial testing requires the use of user-developed source codes for
crystal plasticity simulations, thus involving a high computational load.

Machine-learning is an effective way to estimate the mechanical re-
sponse of materials from their microstructural information. Many
machine-learning algorithms have been proposed, where artificial neu-
ral networks (ANNs) have gained popularity in thefield ofmaterials sci-
ence since the 1990s [37–39]. An early review article by Bhadeshia [39]
published in 1999 had already anticipated that ANNwill be a promising
machine-learning tool for estimating material properties. In fact, ANNs
have since been appliedwidely for the estimation of mechanical behav-
ior for variousmaterials [40–45]. Yang et al. [43] proposed a newmeth-
odology to predict the stress-strain curve of binary composites using
ANN and principal component analysis. Janab et al. [44] used a genetic
algorithm and ANN to predict the rate-dependent tensile flow behavior
of AA5182-O aluminum alloy sheets. More recently, Ali et al. [45]
employed ANN to estimate the stress-strain curve and texture evolution
of AA6063-T6 aluminum alloy under non-proportional loading
conditions.

We have previously proposed a deep neural network (DNN)-based
methodology for the estimation of uniaxial stress-strain curves and
the anisotropy of Lankford value (r-value) of aluminum alloy sheets
using crystallographic texture data [46]. In the previous study, DNN
was trainedwith a large training dataset generated using crystal plastic-
ity finite element simulations of uniaxial tensile testing, referred to as
numerical material tests [32]. The trained DNN successfully estimated
the uniaxial stress-strain curve and anisotropic evolution of r-value
with the same accuracy as numerical material tests [46]. However, to
the best of the author's knowledge, machine-learning-basedmethodol-
ogy has not yet been used to estimate biaxial stress-strain curves of
sheet metals.

The purpose of this study is to propose a new DNN approach to effi-
ciently estimate biaxial stress-strain curves of sheet metals from their
underlying microstructural features. Two DNNs were developed; one
to estimate biaxial stress-strain curves from a digital image of {111}
pole figure (DNN-2D) and another to estimate biaxial stress-strain
curves from a three-dimensional (3D) image representing the crystallo-
graphic texture in a voxelized Euler angle space (DNN-3D). Both the
DNNs were trained using synthetic crystallographic texture datasets
containing typical preferred texture components in aluminum alloy
sheets, namely Cube, Goss, S, Brass, and Copper-components. Biaxial
stress-strain curves, used in the training dataset, were generated via
CPFEM based numerical biaxial tensile tests. The two trained DNNs
were validated by comparing the estimated biaxial stress-strain curves
with those obtained from numerical biaxial tensile tests. To facilitate
further implementation of this proposed DNN approach, the trained
DNNs, training parameters, and training datasets are made available
for free download at https://github.com/Yamanaka-Lab-TUAT/DNN-
NMT [47].
2. Materials and methods

2.1. Experimental tensile testing

The numerical biaxial tensile tests, used to generate the training
dataset, were validated using experimental uniaxial and biaxial tensile
testing of a 5182-O aluminum alloy sheet (initial thickness = 1.0
mm). The crystallographic texture of the sheet was measured using
electron backscattered diffraction (EBSD). The number of crystal orien-
tations obtained from the EBSDmeasurement was 1,009,957. The {111}
pole figure of themeasured texture is given in Fig. 1. The pole figure in-
dicated that the texture in the 5182-O aluminum alloy sheet included a
weak {001}〈100〉 Cube-component.

The true stress-true strain curve obtained from the uniaxial tensile
test was used to identify the parameters in the crystal plasticity consti-
tutive equation used in the numerical biaxial tensile tests. The uniaxial
tensile samples were prepared in accordance with the Japan Industrial
Standards (JIS 13 B-type specimen). The rolling direction (RD) of the
sheet was set parallel to the tensile direction in the uniaxial tensile
test. The uniaxial tensile tests were performed using the Autograph
AG-Xplus 100 kN instrument (SHIMADZU Co.). A fixed equivalent plas-
tic strain rate in the order of 5.0 × 10−4 s−1 was used during uniaxial
tensile testing under a quasi-static condition. Two specimens each
were tested for RD and transverse direction (TD) of the sheet.

The biaxial tensile tests were performed on cruciform samples using
a servo-controlled testing machine. The detailed specifications of the
samples and testing machine have been previously reported [14,15].
Tensile forceswere applied along RD and TDof the sheet and various ra-
tios of the true stress components along the RD and TD (σ11: σ22 = 4:1,
2:1, 4:3, 1:1, 3:4, 1:2, and 1:4, where σ11 and σ22 correspond to the true
stress along RD and TD, respectively) on a linear stress pathwere inves-
tigated. A fixed equivalent strain rate in the order of 5.0 × 10−4 s−1 was
used during biaxial tensile testing. Two specimens were tested for each
stress ratio and the two stress-strain curves thus obtained from the bi-
axial tensile tests were averaged. The averaged biaxial stress-strain
curves were compared to those calculated from the numerical biaxial
tensile tests.

https://github.com/Yamanaka-Lab-TUAT/DNN-NMT
https://github.com/Yamanaka-Lab-TUAT/DNN-NMT
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2.2. Numerical biaxial tensile testing

The constitutive equation based on the crystal plasticity theory
[48–51] and the finite element model used in the numerical biaxial
tensile tests are presented in this section.

2.2.1. Crystal plasticity constitutive equation
The crystal plasticity constitutive equation proposed by Peirce et al.

[48] was used in our study. Multiplicative decomposition of a deforma-
tion gradient tensor (Fij) in the Cartesian coordinate system gives the
following equation:

Fij ¼ F�ik F
p
kj ð1Þ

where Fik∗ and Fkj
p are the elastic and the plastic components of the defor-

mation gradient tensor, respectively. The velocity gradient tensor (Lij) is
defined as:

Lij ¼ _Fik F
−1
kj ð2Þ

where F
:

ik is the rate of the deformation gradient tensor. The velocity
gradient tensor in Eq. (2) can be divided into two tensors as:

Lij ¼ Dij þWij ð3Þ

where Dij is the deformation rate tensor and Wij is the continuum spin
tensor. These tensors are comprised of elastic and plastic components:

Dij ¼ De
ij þ Dp

ij ð4Þ

Wij ¼ W�
ij þWp

ij ð5Þ

where Dij
e and Dij

p are the elastic and plastic components of the defor-
mation rate tensor, respectively and Wij

∗ and Wij
p are the elastic

and plastic components of the spin tensor, respectively. The plastic
components of the deformation rate and the spin tensors are
described as:

Dp
ij ¼

Xnslip
α¼1

P αð Þ
ij

_γ αð Þ ð6Þ

Wp
ij ¼

Xnslip
α¼1

ω αð Þ
ij

_γ αð Þ ð7Þ

where nslip is the number of slip systems in a crystal and γ
:

αð Þ is the
plastic shear strain rate for the αth slip system. As 12 slip systems are
involved in a face-centered cubic crystal, we have nslip = 12 and α
can vary from 1 to 12. We have used the following equation proposed
by Pan et al. [49] to calculate the plastic shear strain rate:

_γ að Þ ¼ _γ0
τ að Þ

g að Þ

����τ að Þ

g að Þ

����
1
m−1

ð8Þ

where γ0
:
is the reference shear strain rate, τ(α) is the resolved shear

stress for αth slip system, m is the strain rate sensitivity parameter,
and g(α) is the critical resolved shear stress (CRSS) for αth slip system.
Further, Pij(α) and ωij

(α) in Eqs. (6) and (7) are given as follows:

P αð Þ
ij ¼ 1

2
s� αð Þ
i m� αð Þ

j þm� αð Þ
i s� αð Þ

j

� �
ð9Þ

ω αð Þ
ij ¼ 1

2
s� αð Þ
i m� αð Þ

j −m� αð Þ
i s� αð Þ

j

� �
ð10Þ

where si∗(α) (i=1, 2, 3) is a unit vector in the slip direction andmi
∗(α) is a

unit vector normal to the slip plane in the deformed configuration. The
crystal rotation was described as follows:
s� αð Þ
i ¼ F�ijs

0 αð Þ
j ð11Þ

m� αð Þ
i ¼ m0 αð Þ

j F�−1
ji ð12Þ

where mi
0(α) is a unit vector in the direction of initial slip and si

0(α) is a
unit vector normal to the slip plane.

The constitutive equation for finite deformation is given as:

σ
∇
ij ¼ Ce

ijklDkl−
Xnslip
α¼1

R αð Þ
ij

_γ αð Þ ð13Þ

Further,

R αð Þ
ij ¼ ω αð Þ

ik σkj−σ ikω
αð Þ
kj þ Ce

ijklP
αð Þ
kl ð14Þ

where∇σ ij is the Jaumann rate of the Cauchy stress tensor and Cijkl
e is the

elastic modulus tensor.
The evolution of CRSS was used to evaluate the strain-hardening of

the material by employing the following equation:

g að Þ ¼ τ0 þ
Z

t
_g að Þdt ð15Þ

where t denotes time and τ0 is the initial CRSS. g
:

αð Þ is the rate of CRSS,
and is defined as:

_g αð Þ ¼
Xnslip
β¼1

h αβð Þ _γ βð Þ
��� ��� ð16Þ

where h(αβ) is the hardening coefficient matrix. This term is further de-
fined as:

h αβð Þ ¼ q αβð Þ dτ γð Þ
dγ

þ 1−q αβð Þ
� � dτ γð Þ

dγ
δαβ ð17Þ

where q(αβ) is a matrix describing the level of latent-hardening and δαβ
is the Dirac delta function. The relationship between the shear stress
and the accumulated plastic shear strain (γ) is given as:

τ γð Þ ¼ τ0 þ h0 C γint þ γð Þf gn0 ð18Þ

where h0 is the initial hardening coefficient, n’ is the hardening index, C
is the hardening constant, and γint is the initial plastic shear strain. The
parameters used to describe the strain-hardening behavior of the test
sample included τ0, h0, n’, C, and γint. These parameters were calibrated
by fitting the uniaxial stress-strain curve for RD (i.e. σ11: σ22= 1:0) cal-
culated from the numerical biaxial tensile test to the reference experi-
mental uniaxial tensile test data.

The mathematical homogenization method [52,53] was used to cal-
culate the biaxial stress-strain curves of aluminumalloy sheets based on
the underlying crystallographic texture of the samples using numerical
biaxial tensile tests. The homogenization method derives the governing
equations for two-scale boundary value problems (BVPs) in bothmicro-
scopic and macroscopic length-scales. The microscale BVP was solved
using finite element method and the microscale mechanical behavior
of themicrostructurewas analyzed in specificmacroscopic stress states.
Further, themacroscopicmechanical behaviorwas evaluated at each in-
tegration point of themacroscale finite elementmodel using themicro-
scale BVP solutions. Thismicro-macro coupling schemehas beenwidely
applied in the finite element modeling of elastoplastic materials
[53–56]. A detailed formulation of the two-scale finite element simula-
tion using the crystal plasticity constitutive equation is described in
Supplementary Material and was based on a previously reported
method [21].
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Fig. 3. {111} pole figure of the initial 1000 crystal orientations used as the input data in the
numerical biaxial tensile test (σ11: σ22 = 1:0), which was performed to calibrate the
strain-hardening parameters of the crystal plasticity constitutive equation. The initial
crystal orientations were sampled from the results of EBSD measurement.

Table 1
Material constants for 5182-O aluminum alloy and parameters used in this
study.

Elastic constants [GPa]
(Voigt notation)

C11 = 108.2
C12 = 61.3
C44 = 28.5

Reference shear rate, γ
:

0 [s−1] 0.5

Strain rate sensitivity factor, m 0.005

4 A. Yamanaka et al. / Materials and Design 195 (2020) 108970
2.2.2. Finite element model for numerical biaxial tensile test
The finite element model used for the numerical biaxial tensile tests

is shown in Fig. 2. Two length-scales were defined, where the macro-
scopic scale was denoted by xi (i = 1, 2, 3) and the microscopic scale
by yi (i = 1, 2, 3). The macroscale coordinate axes for i = 1, 2 and 3
were defined parallel to the RD, TD, and normal direction (ND) of the
sheet, respectively. The finite element (FE) model for the macroscale
(macro-FE model) consisted of a single hexagonal isoparametric ele-
ment with eight integration points. The FE model for the microscale
(micro-FE model) included a representative volume element for the
crystallographic texture of a sheet andwas described by a cubic domain.
Themicro-FEmodel was divided by 125 elements based on the same fi-
nite element type (isoparametric elementwith eight integration points)
used for the macro-FE model. Thus, crystallographic texture consisting
of 1000 crystal orientations was described in the micro-FE model. The
initial 1000 crystal orientations were sampled from the EBSD measure-
ment results (1,009,957 crystal orientations) based on the STATmethod
[57]. Fig. 3 shows the {111} pole figure of the 1000 crystal orientations
used as the input data for the numerical biaxial tensile test (σ11: σ22

= 1:0), which was performed to calibrate the strain-hardening param-
eters of the crystal plasticity constitutive equation. The same initial crys-
tal orientation dataset was assigned to all integration points in the
macro-FE model.

The material constants for 5182-O aluminum alloy and the parame-
ters used in this study are listed in Table 1 [32]. A fixed strain sensitivity
factor (m) of 0.005 was chosen because the strain sensitivity of alumi-
num alloy is generally low.

The strain-hardening parameters were calibrated using the numeri-
cal biaxial test (σ11: σ22= 1:0) and the nodal velocity along the RDwas
applied to the nodes of the macro-FE model to obtain a nominal strain
rate (5.0 × 10−4 s−1) similar to the experimental uniaxial tensile test.
Further, the nodal forces in the numerical biaxial tensile tests were ap-
plied to the nodes of themacro-FEmodel along the RD and TDusing the
same algorithm as the experimental biaxial tensile test to ensure a con-
stant true stress ratio. The plastic strain rate during biaxial tensile defor-
mation was set in the order of 5.0 × 10−4 s−1. The same seven linear
stress paths evaluated in the experimental biaxial tensile tests were
also evaluated using the numerical biaxial tensile tests (i.e. σ11: σ22 =
4:1, 2:1, 4:3, 1:1, 3:4, 1:2 and 1:4). The macroscopic nominal stress
was calculated by dividing the integrated value of the nodal forces on
the surface of the macro-FE model with the initial cross-sectional area
of the macro-FE model. The macroscopic nominal strain was calculated
by dividing the change in the side length of the macro-FE model after
deformation by the initial length.
2.2.3. Validation
As stated in the previous section, the strain-hardening parameters in

Eq. (18) were identified by fitting the true stress-true strain curve
Fig. 2. The macro- and microscale finite element m
obtained from the numerical biaxial tensile test (σ11: σ22 = 1:0) to
the experimental uniaxial stress-strain curve for the RD of the 5182-O
aluminum alloy sheet. In Fig. 4 (a), the calculated stress-strain curve is
compared with the experimental result. From the fitting of the curves,
we identified the strain-hardening parameters which are listed in
Table 2. Furthermore, the true stress-true strain curve for TDwas calcu-
lated using numerical biaxial tensile test (σ11: σ22 = 0:1) based on the
identified parameters, and the results are compared with the experi-
mentally obtained curve as shown in Fig. 4(b).

Biaxial true stress-logarithmic plastic strain curves were calculated
using the calibrated numerical biaxial tensile tests. The calculated
stress-strain curves displayed high correlation with the experimental
results at true stress ratios of σ11: σ22 = 4:1, 3:4, 1:2, and 1:4 (see
Fig. 5). However, the numerical biaxial tensile tests slightly
overestimated the true stress at the other stress ratios. Overall, the nu-
merical biaxial tensile tests provided a reasonably accurate prediction
of biaxial tensile testing. Therefore, numerical biaxial tensile tests with
the parameters listed in Table 2were used to generate the DNN training
odels for the numerical biaxial tensile tests.



Fig. 4. True stress-true strain curves obtained from experiment (uniaxial tensile test) and numerical biaxial tensile test for the (a) RD and (b) TD of 5182-O aluminum alloy at a true stress
ratio of σ11:σ22 = 1:0.

Table 2
Strain-hardening parameters calibrated based on the numerical biaxial tensile
test at a true stress ratio of σ11: σ22 = 1:0.

Initial CRSS, τ0 [MPa] 45
Latent-hardening matrix, q(αβ) 1.0
Initial hardening coefficient, h0 [MPa] 115
Hardening index, n’ 0.24
Hardening constant, C 17
Initial plastic shear strain, γint 0.1
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and validation datasets. Themain goal of this study was to demonstrate
that DNNs can estimate biaxial stress-strain curves based on crystallo-
graphic texture with same accuracy as the numerical biaxial tensile
Fig. 5. Biaxial true stress-logarithmic plastic strain curves at seven true stress ratios calculated
tensile tests.
tests. Therefore, it was assumed that the strain-hardening behavior
and the corresponding parameters (see Table 2) were not affected by
changes in crystallographic texture.

2.2.4. Training, validation, and test datasets
The development of a DNN machine-learning algorithm requires

training, validation, and test datasets. During training, the DNN iden-
tifies patterns in a training dataset that includes input and output
data. Here, the input data was comprised of true stress ratios and digital
images of the synthetic crystallographic texture, while the output data
was the biaxial true stress-logarithmic plastic strain curves calculated
using the numerical biaxial tensile test. The validation dataset was
used to optimize the weights and biases of the DNN, after which the
test dataset was used for testing the performance of the trained DNN.
from experiments (biaxial tensile testing with a cruciform sample) and numerical biaxial



Table 3
Bunge Euler angle of the ideal orientations of the different preferred texture components.

Component Euler angles (ϕ 1, ϕ, ϕ 2; °)

Cube {001}〈100〉 (0, 0, 0)
Goss {110}〈001〉 (0, 45, 0)
S {123}〈634〉 (59, 37, 63), (27, 58, 18), and (53, 75, 34)
Brass {110}〈112〉 (35, 45, 0) and (55, 90, 45)
Copper {112}〈111〉 (90, 35, 45) and (39, 66, 27)
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It is important to note that the DNN was not further optimized during
this independent testing step.

2.3. Crystallographic texture

2.3.1. Synthetic crystallographic texture
The synthetic crystallographic texture was based on five preferred

texture components generally observed in aluminum alloys, namely
Cube {001} 〈100〉, Goss {110}〈001〉, S {123}〈634〉, Brass {110} 〈112〉,
and Copper {112} 〈111〉. Cube and Goss are recrystallization texture
components, whereas S, Brass, and Copper are deformation texture
components. The Bunge Euler angles (ϕ1, ϕ, and ϕ 2) of the ideal orien-
tations of each texture component are given in Table 3.

The synthetic texture was modeled using a three-dimensional
Gaussian distribution function based on the ideal orientations given in
Table 3. The Gaussian distribution function is expressed as:

f ϕ1;ϕ;ϕ2ð Þ ¼ 1ffiffiffiffiffiffi
2π

p� �3
ζ3
i

exp −
ϕ2
1 þ ϕ2 þ ϕ2

2

2ζ2
i

 !
ð19Þ

where ζi2 (i=Cube, S, Goss, Brass, and Copper) denotes the variance of
each preferred texture component in the synthetic texture with respect
to the ideal orientation. The synthetic texture was determined using
Eq. (19) as follows:

Step 1: The volume fraction (Vi) and variance (ζi2) (i=Cube, S, Goss,
Copper, and Brass) of each texture component in the synthetic tex-
ture were determined. The number of crystal orientations of each
texture component (Nori

(i)) in the synthetic texture was calculated as
Nori
(i) = 1000Vi.

Step 2: Three random real numbers (a, b, c) between 0 and 1 were
generated from a Gaussian distribution with mean = 0 and
variance = 1.
Step3:The real numbers generated inStep2weremultipliedby the stan-
dard deviation (ζi) to determine the random orientation (ϕ’1, ϕ’, ϕ’2; °).
Step 4: The ideal orientation of the texture component was added to
the randomorientation obtained in Step 3 to give the synthetic texture
orientation (ϕ 1,ϕ,ϕ 2) (e.g. orientation angle (ϕ1,ϕ,ϕ 2)= (ϕ’1+59°,
ϕ’+ 37°, ϕ’2 + 63°) for the S-component).
Fig. 6. Schematic diagram of the procedure for cr
Step 5: Steps 2 to 4 were repeated for all the crystal orientations.
Various synthetic textures were generated by changing the volume

fraction of the preferred texture component in the synthetic texture
(Vi) in 10% increments from 0% to 100%. If the sum of the volume frac-
tions of the preferred texture components was less than 100%, the re-
mainder was attributed to a random component. The variance (ζi2) in
Step 1 was changed every 5 deg2 from 5 to 15 deg2, as described in a
previously reported method byWu et al. [58]. A total of 5944 synthetic
textures were generated for the training and validation datasets.

For the test dataset, synthetic texturewas generated by changing the
volume fraction of the preferred texture components (Vi) in 10% incre-
ments from0% to 60%,while the variance (ζi2)was changed every 5 deg2

from 5 to 15 deg2. A total of 252 synthetic textures were generated for
the test dataset.

2.3.2. Pole figure of synthetic crystallographic texture
DNN-2Dwas developed to estimate biaxial stress-strain curves from

a digital image of the {111} pole figure of a synthetic texture. The digital
image of a {111} pole figure was generated as follows (see Fig. 6):

Step 1: The position of the pole (Q(x, y)) for a crystal orientation in
the synthetic texture was determined via stereographic projection.

Step 2: The projection plane was divided into N2 = 2n × 2n sub-
domains, where the number of sub-domains corresponded to the
resolution of the digital image of the {111} pole figure.
Step 3: The sub-domain, Q(i, j), containing the pole, Q(x, y), was de-
termined, where i (i = 1–2n) and j (j = 1–2n) denote the indices of
the sub-domain.
Step 4: Steps 1, 2, and 3were repeated for all the crystal orientations
in the synthetic texture.
Step 5: The number of poles in each sub-domain was calculated and
denoted asM(i, j). The luminance of each pixel in the digital image of
the {111} pole figure was calculated as L(i, j) = 255 M(i, j)/a. The
value of a is fixed, where a value of 10 was used in this study.
A small proportion (0.01%) of the calculated pole figures contained

pixels with a luminance value above 255. The luminance of these pixels
was corrected to 255.

Fig. 7 shows the digital images of {111} pole figures produced by the
above procedure, in which the synthetic texture consisted of a single
preferred texture component. The gray scale represents the integration
degree of the texture component. High resolution pole figure images
can generate a large computational load during DNN training and esti-
mation of biaxial stress-strain curves using the trained DNN. Therefore,
the effect of pole figure image resolution on estimation accuracy was
evaluated by trial-and-error. A preliminary investigation indicated
that a {111} pole figure image resolution of 128 × 128 pixels (i.e. n =
7) was most suitable.

The digital images of the {111} pole figures were converted via
monochrome inversion during the training of DNN-2D, which follow
the Modified National Institute of Standards and Technology (MNIST)
eating a digital image of a {111} pole figure.



Fig. 7. Digital images generated from {111} pole figures in which the synthetic texture consisted of a single preferred texture component, namely (a) Cube, (b) S, (c) Goss, (d) Brass, and
(e) Copper. The pole figures were generated at a constant volume fraction (Vi = 100%) and variance (ζi2 = 10 deg2), where i = Cube, S, Goss, Brass, and Copper.
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dataset [59]. The 5944 pole figure digital images generated for all the
synthetic textures were saved in portable network graphics (PNG)
format.

2.3.3. 3D orientation map of synthetic crystallographic texture
The 3D images of the synthetic texture used as the input data for

DNN-3D were created using the following procedure:

Step 1: The position of crystal orientations in the synthetic texture
was calculated in a 3D Euler angle space ranging 0° ≦ ϕ1 ≦ 360°, 0°
≦ ϕ ≦ 180°, and 0° ≦ ϕ 2 ≦ 360° (see Fig. 8(a)).

Step 2: The 3D Euler angle space was divided into Nx × Ny × Nz

voxels.
Step 3: The orientation densities (ρi) of the ith (i=1, 2,…,Nx ×Ny ×
Nz) voxelwere calculated asρi= ni / b, where ni is the number of ori-
entations in the ith voxel and b is a constant for regularizing ρi be-
tween 0 and 1. A matrix of orientation density (ρi) was used to
train DNN-3D.
The number of voxels in the 3DEuler angle spacewasNx ×Ny ×Nz=

32×16×32, thus the total number of voxelswas equal to the resolution
of the digital image of {111} pole figure (27 × 27). A b-value of 40 was
used to ensure that the synthetic texture was only observed when the
orientation density (ρi) was larger than 1, thus the orientation density
was correct to 1. An example of a 3D image of a synthetic texture com-
prising a single Goss component with a variance of ζGoss2 = 10 deg2 is
shown in Fig. 8(b). The 3D image data of a synthetic texture is hereafter
referred to as 3D orientation map.

2.3.4. Biaxial true stress-logarithmic plastic strain curves
The training and validation datasets contained biaxial true stress-

logarithmic plastic strain curves calculated using the numerical biaxial
Fig. 8. (a) 3D plot of a synthetic texture containing a single Goss component (ζGoss2 = 10 deg2

texture with the distribution of orientation density (ρi) in the voxelized Euler angle space.
tensile tests based on synthetic texture. A total of 53,496 stress-strain
curves were generated by performing the numerical biaxial tensile
tests at 9 true stress ratios, namely σ11: σ22 = 1:0, 4:1, 2:1, 4:3, 1:1,
3:4, 1:2, 1:4, and 0:1, based on 5944 synthetic textures. The test data
contained biaxial true stress-logarithmic plastic strain curves calculated
using the numerical biaxial tensile tests based on 252 synthetic textures,
thus producing a total of 2268 stress-strain curves (252 textures × 9
true stress ratios).

The dimensions of output data from the trained DNNs was reduced
by processing the biaxial stress-strain curves as follows:

Step 1: Non-dimensional true stress-logarithmic plastic strain
curves were calculated by normalizing the true stress-logarithmic
plastic strain curves obtained from the numerical biaxial tensile
tests by their maximum values (σmax and εmax

p ).

Step 2: The non-dimensional true stresses (σ i; i = 1, 2, …, ndiv) at
equal intervals between 0.5 and 1.0 and the corresponding non-

dimensional logarithmic plastic strain (εp0; i=1, 2,…, ndiv) were cal-
culated. Here, ndiv is a constant.
Thus, the biaxial stress-strain curves were presented as a numerical

sequence including σ i, ε
p
i (i = 1, 2, …, ndiv), σmax and εmax

p , where ndiv
was set to 50 in this study.

2.4. Deep learning method

2.4.1. Architecture of DNN-2D
DNN-2Dwas developed to estimate biaxial stress-strain curves from

a digital image of the {111} pole figure representing synthetic texture
(see Fig. 9). The six-layered DNN-2D was based on a similar DNN re-
ported by Koenuma et al. [46], and consisted of convolution, max
pooling, and fully connected layers. A convolution layer and a max
) in the 3D Euler angle space. (b) The corresponding 3D orientation map of the synthetic
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pooling layerwere used in the first layer to receive the input image (128
× 128 pixels). A filter size of 7 × 7 and the stride value of 3 was used in
the convolution layer, while a filter size of 3 × 3 was used in the max
pooling layer. Thus, 16 images of 14 × 14pixelswere obtained to extract
the features of the input {111} pole figure. The second layer converted
these 16 images to 32 images of 6 × 6 pixels using a convolution layer
with a filter size of 5 × 5 and a stride value of 2. The third layer com-
pressed the 32 images into 64 images of 1 × 1 pixel using a convolution
layer with a filter size of 5 × 5 and stride value of 1, and a max pooling
layerwith a filter size of 2 × 2. This layer further captured the features of
the {111} pole figure image. The fourth layer combined the 64 images
and corresponding true stress ratio (i.e. σ11: σ22) with a fully connected
layer of 512 units. The nine true stress ratios (σ11: σ22 = 1:0, 4:1, 2:1,
4:3, 1:1, 3:4, 1:2, 1:4, and 0:1) were converted to real numbers (0,
0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, and 1, respectively). The neural
network included two-branches to output the non-dimensional loga-
rithmic plastic strains (εpi ; i = 1, 2, …, ndiv), maximum true stress
(σmax) and logarithmic plastic strain (εmax

p ) values in the output layer.
The fifth layer was a fully connected layer with 512 units to improve
the regression accuracy of the non-linear training data, whereas the
sixth layer was a fully connected layer to output the normalized loga-
rithmic plastic strain (εpi ), maximum true stress (σmax), and maximum
logarithmic plastic strain (εmax

p ) for RD and TD.
In DNN-2D and DNN-3D, the convolution was followed by batch

normalization [60,61] in the first, second and third layers. Further,
the exponential linear unit (ELU) [62] was used as an activation
function for all layers except for the output layer. The mean squared
error (MSE) of the loss function was applied in DNN-2D and DNN-
3D.

DNN-2Dwas constructed and trained in theNeuralNetwork Console
developed by Sony Network Communications Inc. [63]. The detailed
specifications of the layers used in DNN-2D are given in the web refer-
ence [64] and the trained DNN-2D, the training parameters, and the
Fig. 9. Schematic illustration of DNN-2D for estimating biaxial stress-strain curves
datasets used for training and validation are freely available at https://
github.com/Yamanaka-Lab-TUAT/DNN-NMT [47].

2.4.2. Architecture of DNN-3D
DNN-3Dwas developed to estimate biaxial stress-strain curves from

the 3D orientation map of a synthetic texture (see Fig. 10). The DNN
consisted of six layers and was constructed based on Keras [65] frame-
work. The first layer consisted of a convolution layer and a max pooling
layer to receive the input data (3D orientation map). The convolution
layer had a filter size of 7 × 7 × 7 and a stride value of 1, while the
max pooling layer had a filter size of 2 × 1 × 1. The input data was con-
verted to 16 voxel datasets of 14 × 12 × 14. The second layer converted
the 16 voxel datasets to 32 voxel datasets of 6 × 5 × 6 using a convolu-
tion layer with a filter size of 5 × 5 × 5 and a stride value of 2. The third
layer further compressed the 16 voxel datasets to 64 voxel datasets of 1
× 1 × 1 using a convolution layer with a filter size of 5 × 5 × 5 and a
stride value of 1, and a max pooling layer with a filter size of 2 × 1 ×
2. The fourth, fifth and sixth layers applied were same as those
employed in DNN-2D.

If a larger number of intermediate layers were to be included, the es-
timation accuracy of the biaxial stress-strain curves is expected to im-
prove. However, it can result in overtraining due to increase in the
number of optimized weights and bias. A preliminary investigation of
the effect of the number of intermediate layers on the estimation accu-
racy was conducted by including 1, 2, and 3 intermediate layers. The es-
timation accuracy did not improve when 3 intermediate layers were
used, thus 2 intermediate layers (i.e., fourth and fifth layers) were cho-
sen. The number of units in the intermediate layers were evaluated in
the range 256 to 1024, thus confirming that 512 units was suitable.

2.4.3. Training and validation of DNN-2D and DNN-3D
DNN-2D and DNN-3D were trained using a mini-batch-based

training scheme based on the Adam optimization algorithm [66].
from a digital image of the {111} pole figure representing a synthetic texture.

https://github.com/Yamanaka-Lab-TUAT/DNN-NMT
https://github.com/Yamanaka-Lab-TUAT/DNN-NMT


Fig. 10. Schematic illustration of DNN-3D for estimating biaxial stress-strain curves from a 3D orientation map of a synthetic texture.
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A mini-batch size of 256 was chosen based on a preliminary evaluation
of various mini-batch sizes (64, 128 and 256).

The resulting curves exhibited variations in the loss function (MSE)
during the training and validation of the DNNs (Fig. 11). Training was
terminated at 6000 epochs for DNN-2D and 3000 epochs for DNN-3D,
where a full day was required for 5000 epochs using a graphic process-
ing unit (NVIDIA TITAN V). The optimized weights and biases used for
the estimation of the biaxial stress-strain curves were determined
after 1060 epochs and 1330 epochs during the validation of DNN-2D
and DNN-3D, respectively.
Fig. 11. Variation in the loss function (MSE) during the training and validation of (a) DNN-2D a
respectively. (For interpretation of the references to colour in this figure legend, the reader is r
3. Results

3.1. Synthetic textures for testing the trained DNNs

Table 4 shows the volume fraction (Vi) and the variance (ζi2) of the
preferred texture components in three synthetic textures (Textures A,
B, and C) used to test the trained DNNs. The three synthetic textures
were not included in the training or validation datasets. The volume
fraction and the variance of Textures A, B, and C were determined
based on the texture of previously reported aluminum alloy sheets
nd (b) DNN-3D, where the red and blue lines represent the training and validation curves,
eferred to the web version of this article.)



Table 4
Volume fraction (Vi) and the variance (ζi2) of the preferred texture components in the synthetic textures (A, B, and C) used to test the trained DNN-2D and DNN-3D.

Cube S Goss Brass Copper Random

Vcube ζcube2 VS ζS2 VGoss ζGoss2 VBrass ζBrass2 VCopper ζCopper2 VRandom

Texture A 6% 11 deg2 29% 7 deg2 5% 7 deg2 15% 7 deg2 15% 7 deg2 30%
Texture B 5% 14 deg2 41% 9 deg2 4% 6 deg2 22% 9 deg2 16% 11 deg2 12%
Texture C 18% 13 deg2 8% 8 deg2 10% 12 deg2 2% 13 deg2 4% 5 deg2 58%
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[67]. Examples of the digital images of the {111} pole figures and the 3D
orientation maps for Textures A, B, and C are shown in Figs. 12 and 13,
respectively. The major texture component in Textures A and B was
the S-component, while Texture C contained a large volume fraction
of the Cube-component and random texture.

The trained DNN-2D and DNN-3Dwere tested by comparing the es-
timated biaxial stress-strain curves with those calculated using the nu-
merical biaxial tensile tests. The crystal orientations in the synthetic
textures were dependent on the random numbers which were used to
generate the synthetic textures. Thus, five sets of synthetic textures
were generated based on the volume fraction and the variance listed
in Table 4. The five generated synthetic textures were used as initial
crystal orientations in the numerical biaxial tensile tests. The biaxial
stress-strain curves obtained from the numerical biaxial tensile tests
were used as the reference data for the trained DNN estimations.

The accuracy of the biaxial stress-strain curves estimated by the
trained DNNs was evaluated based on 50 {111} pole figures and 3D ori-
entation maps of Textures A, B, and C generated using the volume frac-
tions and variances listed in Table 4. The pole figures and the 3D
orientation maps were used as input data for the trained DNNs and bi-
axial stress-strain curves were estimated. The estimated mean biaxial
stress-strain curve was compared with the numerical biaxial tensile
test results.
Fig. 12. Example of digital images of {111} pole

Fig. 13. Example of 3D orientation maps
3.2. Estimation of biaxial stress-strain curves using the trained DNNs

The biaxial true stress-logarithm plastic strain curves for Texture A
estimated using the trained DNN-2D are given in Fig. 14. The trained
DNN-2D provided an accurate estimation in comparison to the biaxial
stress-strain curves calculated from the numerical biaxial tensile tests
for all values of the stress ratios. Further, as shown in Fig. 15, the biaxial
true stress-logarithmplastic strain curveswere estimated by the trained
DNN-3D with the same accuracy as the trained DNN-2D.

The results obtained from the trained DNN-2D and DNN-3D were
quantitatively compared based on the contours of equal plastic work
in the stress space. This approach was first introduced by Hill and
Hutchinson [68] and has been widely applied to evaluate the work-
hardening behavior of sheet metals subjected to biaxial loading. The
comparison between the work contours calculated from the biaxial
stress-strain curves estimated by the trained DNNs and the numerical
biaxial tensile tests for Textures A, B, and C is illustrated in Fig. 16. Al-
though the estimated work contours deviated slightly from the refer-
ence data at stress ratios of σ11: σ22 = 4:1 and 1:2, the results of the
DNNs were in good agreement with the numerical biaxial tensile test
results.

The estimation capability of the trained DNNs was evaluated based
on the root mean squared error (RMSE) calculated as follows:
figure for Textures (a) A, (b) B, and (c) C.

for Textures (a) A, (b) B, and (c) C.



Fig. 14. Biaxial true stress-logarithmic plastic strain curves for Texture A calculated using the numerical biaxial tensile tests (black) and estimated by the trained DNN-2D (red). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)

11A. Yamanaka et al. / Materials and Design 195 (2020) 108970
RMSE j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Ntest

XNtest

i¼1

dij
� �2

vuut ð20Þ

where j (j=1, 2,…, 9) is the index number of nine true stress ratios, viz.
σ11: σ22 = 1:0, 4:1, 2:1, 4:3, 1:1, 3:4, 1:2, 1:4, and 0:1. As shown in
Fig. 17(a), dij is the difference between the stress points consisting
the work contours calculated from the DNN and numerical biaxial
tensile test results for the jth stress path; i (i = 1, 2, 3, …, Ntest)
denotes the ith test dataset and Ntest is the number of the test datasets
(i.e. Ntest = 252).

The RMSE for ε0p = 0.01, 0.02, 0.03, and 0.04 is illustrated in Fig. 17
(b) and (c), which indicates that the RMSE increased with increase in
ε0p. Further, the RMSE for all stress ratios was less than 7 MPa, which
corresponded to 3% of the maximum estimated true stress value. Fur-
thermore, with the exception of σ11: σ22 = 1:4 and σ11: σ22 = 1:2,
when ε0

p = 0.01, the RMSE of the work contours estimated by the
trained DNN-3D were smaller than DNN-2D. These findings demon-
strated that the trained DNN-3D provided a more accurate estimation
than DNN-2D.
3.3. Computational efficiency of DNN-2D and DNN-3D

In the previous section, we showed that the trained DNN-3D can es-
timate the biaxial stress-strain curves and the work contour with a
higher accuracy than DNN-2D for most of the stress ratios. This section
compares the computational efficiency of DNN-2D and DNN-3D, which
is an important aspect in the practical use of DNNs.

To compare the computational efficiency in the training of DNN-2D
and DNN-3D, we measured the training time per epoch for DNN-2D
using the profiling function of Neural Network Console [69]. On the
other hand, the training time per epoch for DNN-3D was evaluated by
averaging the training time required for 5 epochs, which was obtained
by using Keras's callback function. The result elucidates that the training
efficiency of DNN-2D (training time per epoch: 13.45 s) is better than
that of the DNN-3D (training time per epoch: 23.43 s).

We further investigated the computational efficiency in the esti-
mation of biaxial stress-strain curves using DNN-2D and DNN-3D
by measuring the time spent for generating the curves for nine stress
ratios using 50 sets of synthetic texture A. The result clearly shows
that the estimation of biaxial stress-strain curves using DNN-2D



Fig. 15. Biaxial true stress-logarithmic plastic strain curves for Texture A calculated using the numerical biaxial tensile tests (black) and estimated by the trained DNN-3D (red). (For
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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(required time: 8.347 s) is faster than that of DNN-3D (required
time: 12.560 s).

In summary, DNN-3D can estimate the biaxial stress-strain curve
with a higher accuracy, though its computational efficiency is lower
than that of DNN-2D. This decline in computational efficiency was ex-
pected since DNN-3D needs to perform the feature extraction of the
3D orientation map using the 3D convolution neural network.

4. Discussion

To calculate the biaxial stress-strain curves for nine true stress ratios,
the numerical biaxial tensile tests requires at least one hour with paral-
lel computing usingmultiple CPUs. On the other hand, the trainedDNNs
provided an accurate estimation of biaxial stress-strain curves for 50
synthetic textures in under a minute. The trained DNNs are computa-
tionally efficient tools for predicting biaxial tensile deformation behav-
ior of aluminum alloy sheets without the use of any user-developed
source codes for crystal plasticity simulations. Therefore, DNN is a
promising method for generating virtual data in the material modeling
of sheet metals.
The biaxial stress-strain curves estimated by the trained DNNs
correlate well with the numerical biaxial tensile test results. How-
ever, as shown in Fig. 17(b) and (c), the RMSE at the stress ratio of
σ11: σ22 = 1:4 is higher than the RMSE at other stress ratios. To iden-
tify the origin of high RMSE, we examined the relationship between
the synthetic textures in the test datasets and the RMSE. Table 5
shows the five synthetic textures for which we found the five highest
values of di8 (see Eq. (20)) at the reference plastic strain of ε0p = 0.04.
It is clearly observed that the high di8 correlates with a relatively high
volume fraction of Goss-component (Vgoss ≥ 50%). To further demon-
strate the correlation between di8 and Vgoss, all biaxial stress-strain
curves at the stress ratio of σ11: σ22 = 1:4 in the training datasets
are shown in Fig. 18; we also show the five biaxial stress-strain
curves in the test datasets corresponding to the synthetic textures
listed in Table 5. The five stress-strain curves for the TD (black solid
lines in Fig. 18), which the trained DNNs could not accurately esti-
mate, lies in the region with low training data density, resulting in
high di8 and consequently a high RMSE. Therefore, the high RMSE
at the stress ratio of σ11:σ22 = 1:4 shown in Fig. 17 can be reduced
by increasing the training data density.



Fig. 16. Contours of equal plastic work calculated from the biaxial true stress-logarithmic plastic strain curves estimated by the trained DNNs and calculated using the numerical biaxial
tensile tests for (a) Texture A, (b) Texture B, and (c) Texture C,where ε0p is the reference plastic strain and represents the logarithmic plastic strain in the uniaxial tensile state in RD (plastic
work per unit volume).
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The accuracy of the DNNs can be further improved. In this study, the
{111} pole figure images were used as input data for DNN-2D, but the
stereographic projection used to plot the pole figures may yield the
same pole on a pole figure even if we use different crystal orientations.
It was thus difficult for the DNN-2D to distinguish slight differences in
the synthetic textures. The estimation accuracy of DNN-2D is expected
to improve if multiple pole figures were used as for input images for
DNN-2D, i.e. complementing the {111} pole figure with {100} and
{110} pole figures.

It was assumed that changes in crystallographic texture did not af-
fect the strain-hardening behavior of aluminum alloy sheets. On the
contrary, the stress-strain curve of an aluminum alloy sheet is
dependent on crystallographic texture, crystal grain size, precipitates,
and othermicrostructures [70]. In particular, the dislocation density sig-
nificantly affects stress-strain curve of aluminum alloy sheets. The esti-
mation of biaxial stress-strain curves, which depends on such various
microstructural factors, using a DNN approach requires sufficiently
large database of microstructural data and stress-strain curves of vari-
ous aluminumalloy sheets. Although someprevious studies have devel-
oped databases for specific aluminum alloys [71,72], an appropriate
database of the biaxial tensile deformation behavior of aluminum
alloy sheets has not yet been developed. The development of a database
containing experimental multiaxial stress test results is a major issue
hindering the further development of the proposed DNN approach.



Fig. 17. (a) Schematic representation of dij used for calculating the RMSE (Eq. (20)). RMSE of the contours of equal plasticwork estimated by the trained (b) DNN-2D and (c) DNN-3Dwith
reference to the numerical biaxial tensile tests at different reference plastic strains (ε0p).

Table 5
Volume fraction (Vi) and variance (ζi2) of the five synthetic textures for which highest di8 at the reference plastic strain of ε0p= 0.04were observed in the test datasets. The texture ID cor-
responds to the index i of di8.

Texture ID Cube S Goss Brass Copper Random

Vcube ζcube2 VS ζS2 VGoss ζGoss2 VBrass ζBrass2 VCopper ζCopper2 VRandom

51 10% 9 deg2 10% 13 deg2 60% 8 deg2 10% 13 deg2 10% 8 deg2 0%
63 10% 10 deg2 10% 10 deg2 50% 6 deg2 10% 13 deg2 10% 14 deg2 10%
134 20% 6 deg2 10% 7 deg2 50% 10 deg2 10% 10 deg2 10% 7 deg2 0%
3 10% 5 deg2 10% 11 deg2 50% 12 deg2 10% 14 deg2 20% 13 deg2 0%
90 10% 12 deg2 10% 10 deg2 50% 13 deg2 10% 5 deg2 10% 14 deg2 10%

Fig. 18. Biaxial true stress-logarithmic plastic strain curves in the training datasets (red
and blue lines); the opacity of the curves shows the training data density. Yellow and
black solid lines show the biaxial stress-strain curves for RD and TD in the test datasets
corresponding to the synthetic textures listed in Table 5. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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Database development is a time-consuming task, but transfer learning
[73–75] is a promising methodology for re-training a pre-trained DNN
with a small experimental dataset. Nonetheless, it should be emphasized
that the DNNs developed in this study will contribute to future work.
5. Conclusions

The validity of DNN approach for efficient material modeling of sheet
metals was demonstrated by performing numerical experiments. Specif-
ically, twoDNNs (DNN-2D andDNN-3D)were developed to estimate the
biaxial true stress-logarithmic plastic strain curves of aluminum alloy
sheets from images of crystallographic texture based on preferential tex-
ture components. The input image data included {111} pole figure im-
ages for DNN-2D and 3D orientation maps for DNN-3D. Training,
validation and testing datasets were generated using numerical biaxial
tensile tests based on CPFEM. The numerical biaxial tensile test was ex-
perimentally validated based on uniaxial and biaxial tensile tests of
5182-O aluminum alloy sheet. The biaxial stress-strain curves estimated
by the trained DNNs highly correlated with those calculated by the
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numerical biaxial tensile tests. The precision of DNN-2D and DNN-3D
was compared based on work contours, which indicated that the DNN-
3D is more accurate than DNN-2D. However, the computational effi-
ciency of DNN-2D was found to be higher than that of DNN-3D.

This study has demonstrated that the proposed DNNs and other
machine-learning procedures offer a new approach for the generation
of virtual data aimed at material modeling of sheet metals. The applica-
tion of proposed DNN based approach to real sheet metals relies on the
development of a multiaxial material test database and the future work
aims to retrain the DNNs with an improved database.
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