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ABSTRACT

Chemical imaging, such as mass imaging, provides a distribution image of a particular matter and is crucial for analyzing the chemical and
physical mechanisms of a sample. However, methods that provide molecular or elemental distribution do not always have sufficiently high
spatial resolution to evaluate the nanosized structures in a sample. To address this issue, a multimodal data analysis method was developed
by integrating the obtained low spatial resolution chemical images with complementary methods. In this study, the hydrogen distribution of
a steel sample was measured using electron stimulated desorption (ESD) and scanning electron microscopy (SEM). ESD provided the time-
course images of hydrogen distribution in the steel sample, whereas SEM provided the outline of the steel sample structure. The multimodal
images of the same sample were fused, and then all the data were analyzed together to extract detailed physical and chemical information
that cannot be observed by only one of the methods. The alignment of the images obtained using different methods was evaluated based on
the minimization of each pixel subtraction. Three different data analysis methods, principal component analysis, least absolute shrinkage
and selection operator, and autoencoder, are applied to the image fusion dataset of the ESD image and SEM images to help elucidate the
hydrogen permeation behavior through the steel structure.

© 2020 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://
creativecommons.org/licenses/by/4.0/). https://doi.org/10.1116/6.0000009

I. INTRODUCTION

Multiple analysis methods such as molecular or elemental
mapping and crystal structure analysis are often required to charac-
terize samples that have complex structures and features. The
results from different methods occasionally have different data
formats, which make it difficult to interpret. Therefore, it is neces-
sary to develop a data analysis method for the evaluation of multi-
modal datasets. In our previous study on multimodal data,1

time-of-flight secondary ion mass spectrometry (TOF-SIMS) data
containing chemical images with a resolution of several hundred
nanometers and microscope image data were fused. The fusion
data were analyzed via principal component analysis (PCA) to
obtain PCA score images with a higher spatial resolution and PCA

loadings with detailed spectrum information. The PCA loadings of
the image fusion data were almost the same as those of the
TOF-SIMS data, which implies that the chemical information pro-
vided by TOF-SIMS is preserved after the fusion of image data with
other measurement method data. The analysis of the image fusion
data provides more information than that obtained using one
single analysis method. In this study, modified image data fusion
procedures were developed, and the image fusion dataset was ana-
lyzed using PCA, the least absolute shrinkage and selection opera-
tor (LASSO), and autoencoder. LASSO, which is a sparse modeling
method,2 was employed to directly search for chemical images
similar to a higher lateral resolution microscopic image, while
autoencoder, an unsupervised artificial neural network method,3
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was used to classify fusion data. Autoencoder is capable of classify-
ing fusion datasets into more detailed categories, as compared to
PCA. The data analysis results of individual method data were
compared with that of the fusion data to evaluate the effects of
image data fusion.

Images obtained using various surface analysis techniques can
be integrated as one dataset. In this study, the time-course images
of hydrogen distribution in a steel sample obtained using electron
stimulated desorption (ESD),4 which is one of the desorption
induced by electronic transition5 methods, and the same sample
image obtained using scanning electron microscopy (SEM) were
fused as one dataset. It is important to observe hydrogen adsorp-
tion and permeation through the crystals in the steel sample to
understand the hydrogen embrittlement of steels,6,7 although the
observation of hydrogen, which is the lightest element, is generally
difficult. ESD provides a two-dimensional distribution of hydrogen
adsorbed on the steel surface by scanning an electron beam.8

However, the spatial resolution of ESD is insufficient for observing
crystal structures in steel samples. In contrast, SEM (Ref. 9) pro-
vides nanoscale distribution images and detailed crystal structures.
Therefore, an image data fusion method for the multimodal data of
a hydrogen flowing steel sample obtained via ESD and SEM images
was developed to obtain hydrogen specific distributions with suffi-
ciently high spatial resolution for identifying the differences
between crystal structures.

II. EXPERIMENT

A. Electron stimulated desorption

Stainless steel (SUS304) with dislocation was used as the
sample for measuring the time-course images of hydrogen distribu-
tion with an ESD system built in the SEM (JAMP10, JEOL, Tokyo)
equipment.7 The sample SUS304 steel has an austenitic phase
before cold-working, and a part of austenite grains is transformed
into martensite by cold-working (cold-rolled 10%). Hydrogen gas
(deuterium 99.96%) at 1 atm was supplied to the backside of the
sample membrane (steel with a thickness of 100 μm), which pene-
trates the sample and reaches the surface. The ESD pattern of
hydrogen reflects the density of dislocations in martensite caused
by lathe processing on the austenite steel surface. The electron
energies used in SEM and ESD were 3 and 1 keV, respectively.

The measurement area of the sample SUS304 steel was
330 μm (vertical) × 520 μm (horizontal), and the size of original
pixels for the whole measurement area was 2048 × 2048 pixels. The
pixel size of ESD hydrogen images was reduced to 64 × 64 pixels to
increase the number of ions per pixel. The time-course images of
hydrogen distribution and an SEM image were used for image data
fusion. The resolution of the SEM was 2000 × 2000 pixels, whereas
the resolution of hydrogen image data was set to 64 × 64 pixels. A
total of 13 ESD hydrogen images were obtained at the interval of
5 h ranging from 0 to 65 h.

B. Image data fusion

The image fusion programs were written in MATLAB

(Mathworks, MA, USA). An SEM image and ESD total image
(accumulating signals for 65 h) of almost the same area of the same

sample were used for the image data fusion alignment. The mea-
sured area of the sample was 330 μm (vertical) × 520 μm (horizon-
tal). Because these two images were slightly different, the SEM
image was rotated several degrees to align with the ESD image.
Next, the SEM image was trimmed so that the rotated SEM image
was almost perfectly aligned with the ESD image. If necessary, the
ESD image can also be trimmed to align with the SEM image
because the trimmed SEM image could sometimes be smaller than
the ESD image. Subsequently, the resolutions of the trimmed SEM
and ESD images were resized to 250 × 250 pixels. The pixel size
was changed using MATLAB (Mathworks, Inc., Natick, MA, USA)
command, imresize. Finally, the intensity difference at each pixel of
the SEM and ESD images was calculated, and the total intensity
difference was obtained. If both images were exactly the same, the
total intensity difference should be zero. Thus, the rotation and
trimming procedures were repeated until the smallest total differ-
ence was obtained. This was the final image that had the smallest
total intensity difference at every pixel.

C. Principal component analysis

Autoscaling (the dataset is initially mean-centered and subse-
quently divided by the standard deviation) was applied to the
image fusion data before PCA. PLS Toolbox (Eigenvector Research
Inc., WA, USA)10 working on MATLAB (Mathworks, MA, USA) was
used for PCA. The intensity of the SEM or the fluorescent micro-
scopic image was added as a new variable to the variables of the
ESD hydrogen time-course image data. PCA was performed using
the matrix data of the ESD and the fusion data of ESD and SEM.

D. Least absolute shrinkage and selection operator

LASSO (Ref. 2) was used to identify appropriate solutions by
minimizing the error between a target and solutions. Moreover, the
L1 norm (sum of the absolute values of the intensity) of the solu-
tions was used. The solutions were obtained by minimizing E, as
expressed in the following equation:

E ¼ kY –Axk2 þ λ
X

jxij: (1)

In this equation, the vector Y is the target. The vector Y corre-
sponds to the SEM image that is exactly aligned with the target
data A, the ESD hydrogen time-course images. The vector x, which
provides the minimum value of E in Eq. (1), was identified using
LASSO.2

The first term in the right-hand side of Eq. (1) is the square
error between Y and candidate solutions, and the second term con-
tains an L1 norm and a hyper parameter λ, which depends on the
sparsity contribution. The greater the value of λ, the more impor-
tant is the sparsity. This parameter controls whether to prioritize
the reduction of the square error or the L1 norm. For example, in
matrix A (the ESD time-course images), the number of rows is the
number of observation points (pixels), and the number of columns
is the number of time-courses. For the analysis, the machine learn-
ing package for group LASSO11–13—PYTHON 3—was employed.
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E. Autoencoder

The autoencoder system by Deep Learning Toolbox for
MATLAB (Mathworks, MA, USA) has three layers comprising an
input layer, a hidden layer, and an output layer. Log-sigmoid was
employed as a transfer function. The input data were encoded to
the hidden layer to extract the essential features of the input data.
The size of the hidden layer was set by an analyst. Both datasets of
the ESD images and the fusion of the ESD and the SEM images
were analyzed by the autoencoder, and the extracted features
described in the hidden layer were compared with PCA results.

III. RESULTS AND DISCUSSION

A. Image data fusion and PCA

The ESD image of hydrogen permeating through the steel
sample for 65 h was used for the image data fusion with an SEM
image. The resolution of both images was adjusted to 250 × 250

pixels, and the final size of the SEM image fused with the ESD
images was 316 μm (vertical) × 480 μm (horizontal). Table I lists
the principal component loadings and times of the ESD data in
descending order, and Fig. 1 shows the principal component score
images. In the PCA results of ESD time-course hydrogen image
data, the contribution ratios for principal components (PCs) 1, 2,
and 3 are 61.02%, 7.79%, and 4.63%, respectively, which indicates
that PC1 has the most information on the ESD data. The bright
distributions in the PC1 score image in Fig. 1(a) correspond to the
hydrogen distribution at the final time, and the bright distributions
in the PC2 score image in Fig. 1(b) correspond to the hydrogen
distribution at the initial time. Useful information was not obtained
from PC3.

In the PCA results of ESD and SEM fusion data, as shown in
Table II and Fig. 2, the contribution ratios of PCs 1, 2, and 3 were
57.16%, 7.62%, and 6.29%, respectively. PC1 has most of the data
information as well. The bright distributions in the PC1 score

TABLE I. PCA loadings of ESD data.

PC1 (61.02%) PC2 (7.79%) PC3 (4.63%)

Loading

Time of
ESD

data (h) Loading

Time of
ESD

data (h) Loading

Time of
ESD

data (h)

0.304 31 60–65 0.635 88 0–5 0.735 60 0–5
0.302 90 50–55 0.487 12 5–10 0.119 02 60–65
0.302 04 45–50 0.304 75 10–15 0.092 01 45–50
0.300 8 40–45 0.196 98 15–20 0.078 74 55–60
0.300 06 55–60 0.041 50 20–25 0.063 04 40–45
0.298 60 35–40 −0.000 51 25–30 0.062 11 35–40
0.296 89 30–35 −0.063 53 30–35 0.058 84 50–55
0.285 65 25–30 −0.089 53 35–40 −0.015 04 30–35
0.282 60 20–25 −0.168 03 40–45 −0.017 31 25–30
0.263 50 15–20 −0.198 14 45–50 −0.047 11 20–25
0.238 95 10–15 −0.206 55 50–55 −0.211 72 15–20
0.215 82 5–10 −0.212 92 60–65 −0.397 33 5–10
0.178 98 0–5 −0.239 64 55–60 −0.461 87 10–15

FIG. 1. PCA score images of ESD data: (a) PC1, (b) PC2, and (c) PC3. The color scale bars show the PCA scores.

TABLE II. PCA loadings of fusion data.

PC1 (57.16%) PC2 (7.62%) PC3 (6.29%)

Loading

Time of
ESD data

(h) Loading
Time of
ESD data Loading

Time of
ESD data

(h)

0.3024 60–65 h 0.5363 0–5 h 0.8357 SEM
0.3010 50–55 h 0.5329 SEM 0.1155 55–60 h
0.3003 45–50 h 0.4045 5–10 h 0.0845 45–50 h
0.2990 40–45 h 0.2183 10–15 h 0.0801 60–65 h
0.2984 55–60 h 0.1450 15–20 h 0.0712 50–55 h
0.2972 35–40 h 0.0218 20–25 h 0.0544 40–45 h
0.2955 30–35 h −0.0065 25–30 h 0.0439 35–40 h
0.2844 25–30 h −0.0605 30–35 h 0.0286 30–35 h
0.2813 20–25 h −0.0821 35–40 h −0.0035 25–30 h
0.2624 15–20 h −0.1638 40–45 h −0.0416 20–25 h
0.2378 10–15 h −0.1825 45–50 h −0.1444 15–20 h
0.2154 5–10 h −0.1980 50–55 h −0.2463 10–15 h
0.1790 0–5 h −0.2012 60–65 h −0.2677 5–10 h
0.0989 SEM −0.2130 55–60 h −0.3301 0–5 h
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image correspond to the hydrogen distribution at the final time,
the same as the PCA results of the ESD data, and the dark distribu-
tions in the PC2 score image correspond to the SEM image. The
PCA score images of the fusion data have a higher spatial resolu-
tion compared with the ESD data. The bright distributions in PC2
correspond to the SEM image and the hydrogen distribution at the
initial time. In PC3, the PCA score image of the fusion data has a
higher spatial resolution than that of the ESD data and more useful
information than that of the ESD data. The bright distributions in
the PC3 score image (Fig. 2) correspond to the SEM image and the
hydrogen distribution at the final time, and the dark distributions
in the PC3 score image correspond to the times when the ring-
shape prominently appears at the left side.

B. LASSO and autoencoder

In LASSO, the solution Y in Eq. (1) was the SEM image with
a higher spatial resolution than the ESD images. The same ESD
time-course images for PCA, with resolution adjusted to 250 × 250
pixels, were used as the data matrix X in Eq. (1). Group LASSO
was employed in this study because a conventional LASSO method
sometimes excludes some important variables. All the variables in
the ESD time-course images were separately classified for group
LASSO to select every single variable if necessary. When the regula-
tion parameter λ in Eq. (1) was 2.8 and the learning rate for the
gradient method was 0.03, LASSO suggested that the ESD images

FIG. 3. SEM image (a) and hydrogen distribution images at 30–35 h (b), 35–
40 h (c), and 25–30 h (d), as chosen by LASSO.

FIG. 2. PCA score images of ESD and SEM fusion data: (a) PC1, (b) PC2, and (c) PC3. The color scale bars show the PCA scores.

FIG. 4. Autoencoder results of ESD data: (a) encoder weight No. 1, (b) encoder weight No. 2, (c) encoder weight No. 3, (d) encoder weight No. 4, and (e) encoder weight
No. 5. The color scale bars show the intensity of the encoded ESD data images.
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observed in 30–35 h, 35–40 h, and 25–30 h (Fig. 3) corresponded to
the SEM image. It can be inferred that in these intermediate times
hydrogen was stably flowing through the steel structures, as
roughly shown by SEM. This information is useful for estimating
hydrogen diffusion mechanisms in a sample having multiple crystal
structures.

The ESD and SEM fusion data were also analyzed using the
autoencoder. Figure 4 and Table III summarize the autoencoder
results of ESD data, and Fig. 5 and Table IV summarize the results
of the ESD and SEM fusion data. The variables in Tables III and IV,
such as time and SEM intensity, corresponding to each encoder
weight were sorted in descending order. In both cases of the ESD
data analysis and fusing data analysis, additional information was
extracted by autoencoder than by PCA. The features of the image
data were extracted with a higher spatial resolution by the image data
fusion with SEM. For example, although PCA indicated the unique
ring-shape hydrogen distribution on the left side of PC1 images in
Figs. 1 and 2, the times specific to this distribution could not be sug-
gested because PC1 also includes other factors. In contrast, the
images of encoder weight No. 5 in Fig. 5 clearly show the ring-shape
hydrogen distribution without other factors and indicate that the
initial times, from 0 to 10 h, are directly related to this distribution.

This suggests that hydrogen from this area permeates more rapidly
than from other areas.

All trends obtained from the PCA results were also obtained
using the autoencoder; however, the PCA results did not contain
all information indicated by the autoencoder. For example, the
factors regarding the ring-shape distribution were specified only by
the autoencoder. While PCA extracted the rough features of the
datasets, the autoencoder extracted additional specific features. In
addition, the times corresponding to the prominent features of the
sample were shown directly so that more detailed interpretation
could be possible by the autoencoder.

From these results suggested by the PCA and autoencoder of
the fusion data, it is evident that the image fusion data analysis can
provide information on hydrogen permeation, depending on the
particular structure of the steel. Although further studies are
needed to characterize the detailed structure of the ring-shape area,
the fusion data clearly indicate important areas for clarifying
hydrogen permeation through steel. In the absence of this type of
information, it is difficult to determine the areas that need to be
analyzed in detail. The measurement area for the method providing
nanoscale crystal structures is limited; therefore, it is important to
identify important areas for further investigation.

TABLE III. Encoder weights for ESD data analysis by the autoencoder.

No. 1 No. 2 No. 3 No. 4 No. 5

Encoder
weight

Time
(h)

Encoder
weight

Time
(h)

Encoder
weight

Time
(h)

Encoder
weight

Time
(h)

Encoder
weight

Time
(h)

0.972 60–65 1.326 55–60 0.545 10–15 0.913 35–40 0.923 40–45
0.651 45–50 0.594 25–30 0.499 5–10 0.883 50–55 0.353 25–30
0.560 50–55 0.539 40–45 0.293 0–5 0.528 55–60 0.167 35–40
−0.196 40–45 0.224 35–40 0.237 30–35 0.217 40–45 0.142 15–20
−0.249 30–35 0.039 60–65 0.220 45–50 0.129 15–20 0.133 0–5
−0.339 25–30 −0.050 20–25 0.056 20–25 −0.032 30–35 0.099 60–65
−0.346 55–60 −0.071 0–5 0.054 15–20 −0.197 10–15 0.093 20–25
−0.460 20–25 −0.319 5–10 −0.040 55–60 −0.351 5–10 0.0706 5–10
−0.491 0–5 −0.332 15–20 −0.130 25–30 −0.388 0–5 −0.164 50–5
−0.692 10–15 −0.341 10–15 −0.404 60–65 −0.423 20–25 −0.189 10–15
−0.702 15–20 −0.667 45–50 −0.459 50–55 −0.899 45–50 −0.334 30–35
−0.778 5–10 −0.782 30–35 −0.960 35–40 −1.135 25–30 −0.668 45–50
−0.821 35–40 −2.232 50–55 −1.662 40–45 −1.707 60–65 −2.158 55–60

FIG. 5. Autoencoder results of ESD and SEM fusion data: (a) encoder weight No. 1, (b) encoder weight No. 2, (c) encoder weight No. 3, (d) encoder weight No. 4, and
(e) encoder weight No. 5. The color scale bars show the intensity of the encoded ESD and SEM fusion data images.
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IV. SUMMARY AND CONCLUSIONS

In conclusion, it has been demonstrated that different types of
information can be extracted depending on the data analysis
method, although all the methods employed in this study, such as
PCA, LASSO, and autoencoder, were useful for interpreting the
time-course images of the hydrogen distribution in the steel sample
obtained by the ESD. The analysis results obtained from LASSO
indicated the dependence of hydrogen permeation on the steel
crystal structure as shown by SEM, and the fusion data analysis by
autoencoder indicated unique areas for hydrogen permeation. The
image data fusion of multiple methods is powerful for the extrac-
tion of additional information, as compared to a single method.
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or SEM

Encoder
weight

Time (h)
or SEM

Encoder
weight

Time (h)
or SEM

1.094 5–10 1.608 5–10 1.706 10–15 0.318 55–60 0.913 0–5
0.191 10–15 1.021 0–5 0.957 0–5 0.270 60–65 0.820 5–10
0.101 15–20 0.076 45–50 0.236 15–20 0.267 50–55 0.713 10–15
−0.027 50–55 0.065 60–65 0.134 5–10 0.201 45–50 0.563 15–20
−0.042 40–45 0.044 40–45 −0.157 20–25 0.058 40–45 0.362 20–25
−0.051 55–60 −0.094 55–60 −0.195 SEM 0.025 35–40 0.353 50–55
−0.095 30–35 −0.160 50–55 −0.271 25–30 −0.059 0–5 0.306 60–65
−0.154 45–50 −0.168 35–40 −0.515 30–35 −0.086 30–35 0.280 35–40
−0.196 60–65 −0.443 30–35 −0.719 35–40 −0.099 25–30 0.276 45–50
−0.277 25–30 −0.529 SEM −0.901 50–55 −0.183 20–25 0.259 55–60
−0.302 35–40 −0.675 20–25 −0.936 60–65 −0.294 10–15 0.256 30–35
−0.384 20–25 −0.684 25–30 −0.967 40–45 −0.844 SEM 0.217 40–45
−0.562 SEM −0.722 15–20 −1.019 55–60 −1.071 15–20 0.186 25–30
−5.025 0–5 −3.883 10–15 −1.047 45–50 −4.549 5–10 −3.764 SEM
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