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In industrial application, one of the important features for thermal insulating films in electronic devices is transparency. In order 

to expand the potential for industrial application, both high transparency and thermal insulating performance must be pursued. For 

discovery of the material systems which satisfy both properties, the extrapolative search by adaptive learning is applied combining 

with the previous proposed ITR model. The reduction in thermal conductivity is related to the high density of interfaces which have 

high ITR rather than to the change of intrinsic thermal conductivity. The consistent thermal conductivity of TiO2 of 1.56 W/mK from 

5 nm to 50 nm is observed. The selected material system of SiO2/TiO2, nanoscale-layered thin films synthesized by sputtering, show 

ultra-low thermal conductivity of 0.21 W/mK and high transparency (>90%, 400-780 nm). The strong substrate dependence is also 

found that the additional Ti2O3 phase forms as growing on Si substrate and reduces the thermal resistance as relative to the one on 

quartz glass substrate. Compared to the current transparent thermal insulating materials, aerogel or polypropylene, the proposed 

SiO2/TiO2 composites have higher transparency, higher robusticity, good adaptivity to electronics, and lower cost.  

 

 

1．Introduction 

  The transparent thermal insulating materials have been used 

for wide applications in decreasing heat losses and increasing 

efficiency for clean energy usages such as thermal collectors. 

The low thermal conductivity and high transmittance are two 

essential properties, and the ability to reduce heat losses and to 

provide high transmittance varies depending on material types 

and operating temperature. The nanocomposite structure by 

introducing the periodic multilayers has provided an effective 

strategy to reduce the thermal conductivity, even lower than that 

of homogeneous amorphous structure and the theoretical 

predicted values. The phonon propagation in such structures is 

hindered by scattering into random directions or associated 

interferences when they encounter interfaces in nanostructured 

materials. Various methods to identifying candidates which 

have high interfacial thermal resistance (ITR) have been 

proposed, such as the acoustic mismatch model, the diffuse 

mismatch model, and molecular dynamics.[1] Although these 

models assist in evaluating the ITR of material systems, they 

fail in a large-scale prediction or large mismatch between 

simulation and prediction. Another approach to predicting the 

ITR by machine learning model which includes chemical, 

physical, and process factors with higher predictive 

performance to select the materials from among hundreds of 

thousands of systems was proposed in our previous work. [2] 

The combination of a machine learning prediction model and an 

interface design enable the realization of nanocomposite thin 

films with low thermal conductivity. [2] 

  The high transmittance is another main issue to be addressed 

toward the transparent thermal insulating materials. For 

discovery of the material systems which satisfy both properties, 

the searching space for materials candidates should be confined 

to transparent materials with larger band gap. However, 

approximately 95% data in our ITR database are 

metal/nonmetal which are not transparent, resulting in small 

overlap between the training data and searching space. 

Therefore, the extrapolative search by adaptive learning will be 

applied combining with the previous proposed ITR model. 

 

2．Experimental Procedure 

2.1 Film deposition 

The samples of TiO2/SiO2 layered thin films were prepared 

on quartz glass (Qz) or Si substrates in a sputtering system 

(CFS-4EP-LL, Shibaura Mechatronics Corp.) at a pressure of 

around 6 × 10-5 Pa before deposition. The pressure was 

maintained at 0.4 Pa (Ar flow of 20 sccm) during the deposition 

process. Ar was used as the sputtering gas for Au at 20 sccm, 

whereas both Ar and O2 were applied for TiO2 (Ar:16 sccm, 
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O2:4 sccm) and SiO2 (Ar:13 sccm, O2:13 sccm). The RF power 

was set at 200 W for both TiO2 and SiO2, whereas the DC power 

was at 50 W for Au. Parameters TiO2:SiO2 are the thickness of 

TiO2 and SiO2 corresponding to the quartz crystal resonator; the 

thicknesses of TiO2 and SiO2 were increased from 1, 5, to 30 

nm, as shown in Table 1. After the TiO2/SiO2 deposition, a 120 

nm-thick Au layer was deposited, without evacuation, at the top 

as a heat absorber for thermal measurement. The total film 

thickness and the thickness of each layer was analyzed using 

transmission electron microscopy (TEM, JEM-ARM200F, 

JEOL Ltd.). The structural properties of the thin film were 

characterized using X-ray diffraction (Smartlab, Rigaku Corp.) 

Table 1 Experimental parameters of samples 

Sample TiO2:SiO2 Substrate 

TS-Qz-30 30:30 Qz 

TS-Qz-5 5:5 Qz 

TS-Qz-1 1:1 Qz 

TS-Si-30 30:30 Si 

TS-Si-5 5:5 Si 

TS-Si-1 1:1 Si 

2.2 Heat conduction equation  

The thermal resistance measurement was performed by using 

frequency-domain thermoreflectance (FDTR).[3] The thermal 

resistance was along the perpendicular direction (cross-plane) 

to the Qz or Si substrate. The heat conduction was assumed to 

be one-dimensional due to the laser spot being much larger than 

the film thickness, as shown in eq. (1).[4]  
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Where, 𝑇(0) is the temperature of the Au, 𝑞 is heat per unit 

volume, 𝐶 is heat capacity per unit volume and 𝜆 is thermal 

conductivity. 𝑅0 is the sum of interfacial thermal resistances 

at Au/SiO2, SiO2/TiO2, and TiO2/substrate. The subscript 0, 1, 2 

and 3 denote the Au, TiO2, SiO2 and substrate, respectively. The 

temperature on the surface of the Au film, 𝑇(0), was detected 

by a thermoreflectance method using a probe laser with 

applying an alternating current of a frequency of 𝜔. If we plot 

𝑇(0)

𝑞𝑑0
 versus 𝜔−1/2, the intercept gives the sum of the last four 

terms of eq. (1). With the known thickness, the specific heat and 

thermal conductivity of the Au, SiO2 and TiO2 films and 

substrate, the second term of 𝑅0 can be calculated. 

 

3．Results and Discussion 

3.1 Data-driven materials selection 

  Firstly, the proposed ITR machine learning model[2] was 

applied to select the transparent interface with high ITR. From 

our ITR database as shown in Fig. 1, most of the data are 

nontransparent or semi-transparent, while the transparent data 

is less than 5%. The ITR database are available in our previous 

work.[5] The nontransparent data represents the two materials 

aside the interface are both nontransparent, and the 

semitransparent data are the interface which includes one 

transparent material. Due to the large mismatch between the 

training data of ITR database and the searching space of 

transparent interfaces, which may result in high uncertainty of 

the prediction, the extrapolative search by adaptive learning 

with Bayesian optimization (COMBO)[6, 7] and experimental 

validation was performed.  

 

Fig. 1 Relationship between the ITR and temperature. 

The transparent materials in the searching space are screened by 

the band gap which is larger than 2.8 eV to be transparent in 

visible range. It should be noted that some transparent materials 

might be excluded due to the underestimation of the simulated 

values of band gap.[8] The 70 materials, which meet the 

criterion of band gap and have all necessary descriptor for ITR 

prediction, form accordingly more than 4800 possible candidate 

interfaces. In order to make the experimental validation simpler, 

one of the materials was fixed as SiO2, due to its availability of 

synthesis and low thermal conductivity. Several transparent 

materials were predicted with high ITR with SiO2 as shown in 

Fig. 2. The Bayesian optimization of COMBO was applied to 

select the materials from those with higher intrinsic thermal 

conductivity, and after several cycles between prediction and 

feedback of experimental data, interface of TiO2/SiO2 is 

selected. The experimental ITR of TiO2/SiO2 is close the 

predicted values in Fig. 2.  

 

Fig. 2 The thermal conductivity and predicted ITR of 

transparent material candidates. 



3.2 Thermal conductivity 

  The thermal conductivity (k) of the samples with various 

interface number (N) is shown in Table 2. The R0*, which 

subtracted the ITR of Au/SiO2(5 m2K/GW)[9] from R0, is the 

ITR of all interfaces of TiO2/SiO2. The thermal conductivity 

decreases from 0.26 to 0.21 W/mK of samples on Qz and from 

0.96 to 0.54 W/mK of samples on Si with increasing interfaces 

by five times. All the samples deposited on Qz show lower 

thermal conductivities relative to the ones on Si substrates. As 

the thickness of each layer decreases, the ITR of each interface 

(R0*/N) decreases. The thermal conductivity of TS-Qz-1 

achieves very low thermal conductivity of 0.21 W/mK, which 

is even lower than the reported transparent layered materials, 

such as ZrO2/Y2O3,[10] and Y2O3/SiO2.[11]  

Table 2 Thermal conductivity of samples 

Sample N k (W/mK) R0*/N 

TS-Qz-30 2 0.65 25.64 

TS-Qz-5 20 0.26 15.71 

TS-Qz-1 100 0.21 4.08 

TS-Si-30 2 0.97 10.38 

TS-Si-5 20 0.96 1.82 

TS-Si-1 100 0.54 1.18 

3.3 Substrate dependence  

The XRD of the TiO2/SiO2 samples is shown in Fig. 3. The 

phases both show in the samples on Qz and Si substrates are 

rutile TiO2(210) and Au of the top layer, indicating that the films 

are composed of crystalline TiO2 and amorphous SiO2. The 

peak of SiO2(100) comes from the substrate of Qz instead of the 

layered thin film. Interestingly, we found the additional phases 

of Ti2O3 (104) (110) and (214) exist in the samples on Si 

substrates, even as the samples with the same thickness of each 

layer on Qz and Si were deposited simultaneously in the same 

sputtering. These additional phases may be attributed to the 

same atomic environment (tetrahedron) of O in Ti2O3 and Si and 

the similar atomic distance between O-Ti (0.203 nm) and Si-Si 

(0.235 nm). Besides, the peak intensity of Ti2O3 (104) increases 

with the increasing interface numbers, implying the strong 

relation between Ti2O3 phase and interfacial region. 

  

Fig. 3 XRD of TiO2/SiO2 on Qz (left) and Si (right) 

substrates. 

4．Summary 

The extrapolative search by adaptive learning is applied 

combining with the previous proposed ITR model to search 

potential materials for transparent thermal insulators. The 

selected material system of SiO2/TiO2, nanoscale-layered thin 

films synthesized by sputtering, show ultra-low thermal 

conductivity of 0.21 W/mK and high transparency (>90%). The 

thermal conductivity of the TiO2/SiO2 multilayer was reduced 

by 85% from SiO2 values and attributed to the high ITR 

between alternating layers and low intrinsic thermal 

conductivity of component materials.  
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