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ABSTRACT
Architected cellular materials are a class of artificial materials with cellular architecture- 
dependent properties. Typically, designing cellular architectures paves the way to generate 
architected cellular materials with specific properties. However, most previous studies have 
primarily focused on a forward design strategy, wherein a geometry is generated using 
computer-aided design modeling, and its properties are investigated experimentally or via 
simulations. In this study, we developed an inverse design framework for a disordered archi
tected cellular material (Voronoi lattices) using deep learning. This inverse design framework is 
a three-dimensional conditional generative adversarial network (3D-CGAN) trained based on 
supervised learning using a dataset consisting of voxelized Voronoi lattices and their corre
sponding relative densities and Young’s moduli. A well-trained 3D-CGAN adopts variational 
sampling to generate multiple distinct Voronoi lattices with the target relative density and 
Young’s modulus. Consequently, the mechanical properties of the 3D-CGAN generated 
Voronoi lattices are validated through uniaxial compression tests and finite element simula
tions. The inverse design framework demonstrates potential for use in bone implants, where 
scaffold implants can be automatically generated with the target relative density and Young’s 
modulus.

HIGHLIGHTS
● An inverse design framework for 3D Voxelized geometries using a 3D conditional generative 

adversarial network (3D-CGAN) is proposed.
● The trained 3D-CGAN is capable of generating 3D Voronoi lattices with the desired target 

relative density and Young’s modulus.
● The mechanical properties of 3D-CGAN generated Voronoi lattices were experimentally and 

numerically validated.
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1. Introduction

Architected cellular materials are composed of cellular 
architectures designed within specific spatial arrange
ments [1–5]. Tailoring their microstructures offers 
a new architectural degree of freedom, which surpasses 
that of their constituent materials and results in the 
realization of unprecedented properties. Typical archi
tected cellular materials include lattice materials with 
ultrahigh stiffness-to-weight ratios [6–8], negative 
Poisson’s ratio metamaterials [9–11], architected mate
rials with shape reconfigurability [12,13], and metama
terials with programmable mechanical responses [14– 

17], facilitating their description as ‘metamaterials’. 
More importantly, recent advances in additive manu
facturing have enabled the fabrication of complicated 
structures using multimaterials [18,19], shape memory 
polymers [20–22], and magnetic materials [23,24]. 
Thus, the rational design of architected cellular materi
als makes them promising candidates for soft robotics 
[18,23–25], actuators [16,17,26], soft electronics [27,28], 
tissue engineering [29–32], and electrochemical energy 
storage and conversion [33,34].

Over the last few decades, extensive efforts have 
been dedicated to the design of new architected 

CONTACT Ikumu Watanabe WATANABE.Ikumu@nims.go.jp Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, 
Tsukuba 305-8573, Japan

SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 
2023, VOL. 24, NO. 1, 2157682 
https://doi.org/10.1080/14686996.2022.2157682

© 2023 The Author(s). Published by National Institute for Materials Science in partnership with Taylor & Francis Group.  
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-1452-5855
http://orcid.org/0000-0002-0553-4736
http://orcid.org/0000-0001-9693-3152
http://orcid.org/0000-0001-7198-819X
http://orcid.org/0000-0002-7693-1675
http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/14686996.2022.2157682&domain=pdf&date_stamp=2023-01-03


cellular materials to achieve characteristics such as 
programable mechanical responses [14–17], novel 
deformation mechanisms [12,13,35,36], and theoreti
cal stiffness and strength limits [6–8,37]. Notably, 
most of these studies have adopted the forward design, 
that is, a structure is designed based on computational 
modeling methods, and its effective properties are 
explored using time-consuming simulations and/or 
experiments. Using such forward design methods, 
models can be generated via mathematical modeling 
[10,31,32], Boolean and lofting operations [7–9,12,13], 
and topology optimization [38,39]. However, this 
requires experienced designers and extensive trial- 
and-error efforts to achieve the desired properties. 
Consequently, the forward design approach hinders 
practical applications to some extent. For instance, in 
tissue engineering, bone implants should be chosen to 
mimic damaged bones in terms of their biocompat
ibility, relative density (i.e. the volume fraction of solid 
part), and stiffness [29–32,40]. In such situations, the 
desired approach is the inverse design method, based 
on which implants can be designed and generated 
according to target properties and specific 
requirements.

In recent years, deep learning algorithms have been 
exploited to handle these inverse design challenges 
[11,41–50]. However, the direct generation of pixel- 
based representative volume elements – which take 
advantage of variational autoencoders and generative 
adversarial networks (GANs) — focuses primarily on 
two-dimensional geometries [11,44–47]. Although the 
inverse design of three-dimensional (3D) geometries 
has been successfully accomplished in some studies, 
the associated neural networks are always combined 
with additional modeling processes [41–43]. For 
example, in a recent study on the inverse design of 
truss metamaterials, the neural network was trained to 
output elementary lattices from existing datasets and 
their tessellations, which could be used to generate 
new truss metamaterials via geometric transforma
tions [43]. In another study on the inverse design of 
spinodoid metamaterials, the neural network was 
trained to output design parameters that could be 
used to generate a topology via the linear Cahn – 
Hilliard model [41]. Notably, these studies adopted 
an indirect approach to generate such complex geo
metries: the trained neural networks generated mod
eling parameters that could be used to create 
geometries based on additional modeling procedures. 
Here, by contrast, we employ the GAN to directly 
generate 3D voxel-based representative volume ele
ments (RVEs) (i.e. voxelized Voronoi lattices) without 
the need for an additional modeling process. Voronoi 
lattices are disordered architected materials; the irre
gularity not only makes their morphology similar to 

that of bones but also broadens their diversity in terms 
of the stiffness and strength for a given relative 
porosity.

In this study, we developed a deep-learning-driven 
inverse design framework for the direct generation of 
3D voxelized architected cellular materials with user- 
defined relative densities (ρ) and Young’s moduli (E). 
The adopted inverse design framework is a 3D condi
tional GAN (3D-CGAN) based on volumetric convo
lutional neural networks. The 3D-CGAN was trained 
using a dataset consisting of 10,000 3D Voronoi lat
tices and their labels (ρ and E). The lattices were 
derived from the Voronoi tessellation, and their 
Young’s moduli were calculated using a numerical 
homogenization algorithm. The trained 3D-CGAN 
used the target relative density and Young’s modulus 
as the inputs, and it output the corresponding 3D 
voxelized Voronoi lattices. The mechanical properties 
of the generated Voronoi lattices were verified using 
uniaxial compression tests and finite element method 
(FEM) simulations.

2. Methods

2.1. Dataset preparation

Figure 1a shows the process of generating 3D Voronoi 
lattices for dataset preparation. First, a random seed of 
27 3D coordinate points was created using Mitchell’s 
best-candidate algorithm [51]. Note that the algorithm 
generates coordinate points with a regular distribu
tion. Thereafter, a Voronoi diagram was plotted using 
Laguerre – Voronoi tessellation with a 3D periodic 
boundary condition. The periodic condition was 
implemented. The seeds were generated in 3� 3� 3 
unit cells and the center unit cell was defined as an 
RVE. The same approach was employed for 2D design 
in our previous study [17]. The Voronoi skeleton was 
derived from the polyhedral meshes of the Voronoi 
diagram. It should be noted that nodal connectivity, 
which refers to the total number of ligaments con
nected to a node, has a considerable impact on the 
stiffness of architected materials [52]. For example, 
ordered architected materials with nodal connectiv
ities of 3, 4, 6, and 8 are significantly different in terms 
of their Young’s modulus, yield strength, and 
Poisson’s ratio [52]. Changing the nodal connectivity 
may increase the diversity of Young’s modulus for 
Voronoi lattices with the same relative density. 
Therefore, to extend the border of the available data 
space, 0–30% of the edges in the polyhedral meshes 
were deleted randomly to change the nodal connectiv
ity. Consequently, 30% was chosen to maintain the 
isotropy of the Voronoi lattices while extending the 
boundary of the available data space. Note that if this 

Sci. Technol. Adv. Mater. 24 (2023) 112                                                                                                                                                 X. ZHENG et al.



value is too large, the Voronoi lattices will become 
anisotropic. Also, the appearance frequency of each 
node keeps over 1 to prevent single element connec
tivity when randomly deleting edges. Additionally, 
a periodic boundary condition was applied in this 
process to ensure the periodicity of the generated 
Voronoi lattices. Finally, a triply periodic Voronoi 
lattice was generated after a specific thickness was 
assigned to the edges of the polyhedral meshes. For 
deep learning, each Voronoi lattice was voxelized into 
a 3D voxel array (Av) with a shape of ½64; 64; 64�. To 
investigate the lower volume fraction applicability 
limit, the relative density of a Voronoi skeleton was 
reduced. The Voronoi skeleton was voxelized with 
decreasing relative densities, and the result revealed 
that the voxelized Voronoi lattice became discrete if 

the relative density was less than 0.045 (Figure 2a). 
Considering a margin, the minimum relative density 
of the Voronoi lattices was set to 0.1. The modeling 
process was implemented using a Python code, and 
the Laguerre – Voronoi tessellation was based on the 
Python package MicroStructPy [53].

The Young’s moduli of the generated 3D Voronoi 
lattices were calculated using a numerical homogeni
zation method, as detailed in past studies [54–56]. 
That is, the input argument was a 3D voxel array 
consisting of 0 and 1, where 1 indicates a solid, and 0 
indicates a void. The Young’s modulus and Poisson’s 
ratio of the constitutive materials were set as 1.6 GPa 
and 0.23, respectively, corresponding to the material 
parameters of a 3D-printed resin. Periodic boundary 
conditions were then applied during the 
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Figure 1. Dataset preparation. (a) Process of the dataset preparation: the geometry of a voxelized Voronoi lattice was generated 
using Voronoi tessellation and its Young’s modulus was calculated using the homogenization method. (b) Dataset consisting of 
10,000 datapoints where each datapoint was composed of a geometry (a 3D voxel array with a shape of ½64; 64; 64�), its relative 
density, and Young’s modulus. The data space was compared with several typical architected materials, including Gyroid, Schwarz 
Diamond, Schwarz Primitive, and Schoen IWP lattices, and octet and isotropic trusses [37,52].

ρ=0.015 ρ=0.045

ρ=0.115ρ=0.075

(a) (b) (c)

Figure 2. Assessing modeling, numerical homogenization algorithm, and FEM simulation. (a) Voxelizing Voronoi lattice with 
different relative densities. (b) Computational accuracy and cost of the numerical homogenization algorithm. The Voronoi lattice 
was voxelized into 3D voxel arrays with different shapes. (c) Effect of the RVE size on the computational accuracy of FEM 
simulations. The Voronoi lattice was modeled with different RVE sizes, where n� n� n RVE means an RVE consisting of n� n� n 
unit cell numbers.
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homogenization process. The homogenized constitu
tive matrix CH could be solved by obtaining the ele
ment displacements and global displacement field, as 
follows: 

CH
ij ¼

1
Vj j
P

ðeÞ

ð

VðeÞ
χ0ðiÞ
ðeÞ � χðiÞ

ðeÞ

� �T
ke χ0ð jÞ

ðeÞ � χð jÞ
ðeÞ

� �
dVðeÞ

(1) 

where Vj j denotes the total volume of the cube 
domain, χ0ðiÞ

ðeÞ denotes the element displacement, χðiÞ
ðeÞ

denotes the displacement field obtained from the glo
bal stiffness equation, and ke denotes the element 
stiffness matrix. Following iterations for all six load 
cases (three compressions along the x, y, and z axes, 
and three shearing loads), the effective 6� 6 elasticity 
matrix CH was obtained. The directional dependence 
of the Young’s modulus of a typical Voronoi lattice is 
shown in Figure 1, where the shape of the surface 
contour is close to a sphere, thus indicating the 
approximate isotropic stiffness of the Voronoi lattice. 
Consequently, the effective Young’s modulus can be 
obtained using isotropic approximation, where the 
complete 6� 6 elasticity matrix is matched with the 
matrix for the isotropic symmetry class. It should be 
noted that the effective Poisson’s ratio can also be 
calculated using the elasticity matrix. The accuracy of 
the Poisson’s ratio computed by the numerical homo
genization method in our previous work [11]. Because 
the Voronoi lattices were approximated as voxel arrays 
rather than beam-based architected materials, we con
ducted a convergence study according to the number 
of voxels and computational cost. A Voronoi lattice 
(ρ ¼ 0:115) was voxelized into 3D voxel arrays with 
different shape from ½20; 20; 20� to ½80; 80; 80�. The 
Young’s moduli of such 3D voxel arrays were calcu
lated using the numerical homogenization method. 
The calculated Young’s moduli and computational 
cost are compared in Figure 2b. From the figure, it 
can be observed that the Young’s modulus converges 
with the increase in the number of voxels, and the 
value remains constant when the number of voxels is 
greater than ½50; 50; 50�. Further, the computational 
cost (code execution time on a MacBook with M1 
chip) increases exponentially with the number of vox
els. Therefore, with regard to the computational accu
racy and cost, Voronoi lattices were voxelized into 3D 
voxel arrays with a shape of ½64; 64; 64�, which corre
sponds to 643 eight-node hexahedral elements in the 
numerical homogenization method.

The relative density (ρ) refers to the proportion of 
the solid part in a Voronoi lattice and can be calcu
lated as follows: 

ρ ¼
P

Av

643
(2) 

Figure 1b shows the data space of material properties 
for 10,000 generated Voronoi lattices in terms of the 
ρ–E relationship, where the darker region indicates 
a higher concentration of datapoints. The material 
property space was compared with that of typical 
architected materials [37,52]. Notably, the relationship 
between ρ � E does not follow the classical scaling 
laws of the Gibson – Ashby model (E�=E0 ¼ aρb, 
where E� denotes the effective Young’s modulus, E0 
denotes the Young’s modulus of the constituent mate
rial, and a and b are constants) [57]. By contrast, the 
data space of ρ and E covers a wider range, exhibiting 
a ribbon pattern. This implies that neural networks 
can be trained to generate Voronoi lattices with cor
responding properties inside the ribbon-shaped data 
space. Overall, the training dataset comprises 10,000 
datapoints, where each datapoint consists of 
a Voronoi lattice and its corresponding ρ and E.

In the numerical homogenization method, numer
ous unit cells are considered based on a mathematical 
operation [58]. However, the number of unit cells is 
very limited in an experimental validation. Therefore, 
the effect of the number of RVE units on stress – strain 
curve at finite strain was investigated for a comparison 
with the corresponding experiment as shown in 
Figure 2c. The results are addressed in Section 2.4.

2.2. 3D conditional generative adversarial 
network

The neural network architecture yields two main out
puts that are necessary for the inverse design of 
mechanical metamaterials: the modeling parameters, 
which can be used to generate geometries with addi
tional modeling processes [41–43], and the geometries 
in the form of pixels or voxels [11,46,47,59,60]. The 
straightforward generation of geometries can speed up 
the inverse design process and directly visualize geo
metries. The variational autoencoder (VAE) and 
GANs are the most commonly used neural network 
architectures for straightforward generation 
[47,59,60]. In the VAE, an encoder learns to represent 
input data (e.g. geometry or modeling parameters) 
efficiently, and a decoder tries to reconstruct the data 
using the internal representations and the learned 
weights, making it an ideal data compression engine. 
By contrast, the GAN is trained in an adversarial feed
back loop to generate realistic geometries, adopting 
variational sampling to generate distinct geometries 
[11,46]. Consequently, the GAN may be superior to 
the VAE in terms of the generation performance. We 
compare relevant studies using different network 
architectures for the inverse design of mechanical 
metamaterials in Table 1.

In this study, the inverse design of 3D architected 
cellular materials was implemented using a novel 
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Table 1. Comparison of neural networks for the inverse design of mechanical metamaterials.

Input Output Geometry type
Neural 

network type

Number of 
training 

datapoints R-square
Relative 

error MSE Reference

Stiffness tensor Modeling 
parameters

3D spinodoid 
metamaterials

Multi-layer  
perceptron

19,170 0.999 [41]

Stiffness tensor Modeling 
parameters

3D truss 
metamaterials

Multi-layer 
perceptron

3,000,000 0.986 [43]

Elastic modulus and relative density Modeling 
parameters

2D honeycomb, 
square, and re- 
entrant star- 
shaped lattices

Multi-layer 
perceptron

53,000 0.05% [48]

Stress–strain curve 16 binary  
representation 
of geometric 
infills

2D checkerboard- 
shape non- 
uniform cellular 
materials

Multi-layer 
perceptron

16,576 0.00031 [45]

Filter radius, volume fraction, and 
a design objective (maximum bulk 
modulus, maximum shear modulus, 
or minimum Poisson’s ratio).

128 × 128 pixels 2D metamaterials Variational 
autoen 
coders

25,000 0.009 [47]

Young’s modulus and Poisson’s ratio 256 × 256 pixels 2D auxetic 
metamaterials

Generative 
adversarial 
network

100,000 0.014 [11]

Relative density and Young’s modulus 64 × 64 × 64 
voxels

3D disordered 
voxelized 
lattices

3D 
Generative 
adversarial 
network

10,000 0.01 This work
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Figure 3. 3D-CGAN framework and performance. (a) 3D-CGAN comprising three modules: generator, discriminator, and calculator. 
(b) Generator loss, discriminator loss, and mean square error against training epoch. (c) User-input against 3D-CGAN-output values 
for the relative density and Young’s modulus.
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framework: 3D-CGAN. The 3D-CGAN was trained to 
generate 3D voxels of Voronoi lattices from 
a probabilistic space with a given label (i.e. ρ and E) 
by leveraging recent advances in controllable GANs 
and volumetric convolutional networks [61–64]. The 
3D-CGAN had a structure similar to that of the neural 
network used in our previous study, wherein 2D auxe
tic metamaterials were generated using a CGAN [11]. 
In this study, we improved the neural network (3D- 
CGAN) and enhanced its ability to generate 3D geo
metries according to the target properties. The 3D- 
CGAN comprised three modules: a generator, 
a discriminator, and a calculator, which were trained 
by an adversarial process. Notably, the generator 
learns to generate 3D voxelized Voronoi lattices that 
mimic the geometries of the real Voronoi lattices from 
the dataset. The discriminator learns to distinguish 
real Voronoi lattices (from dataset) from fakes (gen
erated by the generator), and it thus helps generate 
realistic Voronoi lattices. The calculator learns to pre
dict ρ and E of given Voronoi lattices, and it thus helps 
the generator spawn Voronoi lattices with the desired 
target properties.

Figure 3a shows the framework of the 3D-CGAN. 
The training process is based on supervised learn
ing. While training, the generator progressively 
becomes better at creating Voronoi lattices that 
look real and exhibit the desired target properties, 
whereas the discriminator becomes better at distin
guishing between real and fake Voronoi lattices. The 
process attains equilibrium when the generator can 
perfectly deceive the discriminator. The 3D-CGAN 
has the ability to generate a batch of 3D voxelized 
Voronoi lattices for a given label (ρ and E) after 
being trained using 10,000 datapoints. The detailed 
information of the 3D-CGAN is discussed in 
Appendix A. Overall, the three primary advantages 
of the 3D-CGAN are as follows: first, compared with 
traditional heuristic criteria (e.g. the genetic algo
rithm), the use of an adversarial criterion speeds up 
the inverse design process and enables the generator 

to capture the object structure implicitly; second, 
the generator establishes the modeling process 
from a 1D probabilistic space to the 3D space of 
objects, without the use of an additional modeling 
process; and third, the calculator serves as an inde
pendent module that helps the discriminator avoid 
overfitting.

2.3. Uniaxial compression tests

The mechanical properties of the 3D-CGAN generated 
Voronoi lattices were first investigated using uniaxial 
compression tests. Notably, to obtain the stiffness of 
these generated Voronoi lattices, 3D printing technol
ogy is ideal, which allows the fabrication of such com
plex models. To print models without supporting 
components, while providing smooth surface finishing, 
we used a stereolithography 3D printer (Form 3, 
Formlabs, USA) with a photopolymer resin (clear 
resin, Formlabs, USA). The photopolymer resin is 
a typical plastic material with a Young’s modulus, 
Poisson’s ratio, and yield strength of 1.6 GPa, 0.23, 
and 38 MPa, respectively [65]. The 3D-printed models 
had dimensions of 40 mm � 40 mm � 40 mm and 
comprised an RVE of 3� 3� 3 unit cells, which were 
selected to represent such types of periodic porous 
materials in terms of mechanical testing [52]. These 
models were exported as standard tessellation language 
(STL) format files and then sliced through PreForm 
before being sent for 3D printing. The printing para
meters were set as follows: a layer thickness of 0.05 mm 
and an operating temperature of 33�C with no support 
structures. To remove the residual resin from the sur
face, these samples were washed with isopropanol after 
3D printing. Thereafter, a post-curing process was 
implemented on these samples at 60�C for 30 min 
using Form Cure (Formlabs, USA). Figure 4a shows 
the representative 3D-printed samples before and after 
surface smoothing.

After 3D-printing fabrication, the mechanical 
properties of these samples were examined through 

(b)(a)

xy
z

Figure 4. Visualization of Voronoi lattices. (a) Representative 3D-printed samples before (top) and after (bottom) surface 
smoothing. (b) Representative mesh used in the FEM simulations.
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uniaxial compression tests using a motorized test 
stand (AGXplus-10kN, Shimadzu, Japan). The static 
compression tests were performed at a vertically con
stant speed of 10 mm/min, following the ASTM stan
dard D695–15. The compression strain was set to 0.15, 
which is adequate to achieve elastic deformation of 
these samples. The deformation processes were 
recorded using a high-speed camera placed in front 
of the samples. The effective Young’s moduli were 
calculated by linearly fitting the initial linear region 
of the recorded stress – strain curves.

2.4. Finite element method simulations

The deformation behavior was visually examined using 
FEM simulations. The deformation problem under 
a finite strain was analyzed using a nonlinear FEM 
simulation, where periodic boundary conditions were 
applied on a periodic microstructure. The detailed pro
cess of implementing the displacement and stress equa
tions has been discussed in our previous reports [59,66]. 
FEM simulations were performed using a commercial 
FEM simulation platform (COMSOL Multiphysics 
Ver. 5.6, COMSOL, Sweden). The constitutive model 
was a plastic material model with a Young’s modulus, 
Poisson’s ratio, and yield strength of 1.6 GPa, 0.23, and 
38 MPa, respectively, corresponding to the mechanical 
properties of the clear resin used in the experiments. 
Nonlinear uniaxial compression simulations were per
formed according to the periodic boundary conditions, 
accompanied by a parametric sweep of the z-axis dis
placement. The stop condition was set when the com
pression strain was 0.15. The models were built using 
approximately 3� 105 second-order tetrahedral solid 
elements, and a typical meshed model is shown in 
Figure 4b. The effective Young’s moduli were also 
extracted from the stress – strain curves.

In the experiments, uniaxial compression deforma
tion was imposed to 3D-printed samples composed of 
3� 3� 3 RVE units. To ensure the validity of the 
experiments, the effect of number of RVE units was 
investigated. Here, we computed the large deforma
tion behavior of a Voronoi lattice (the same Voronoi 
lattice in Figure 2b with a voxel array of ½64; 64; 64�) in 
the uniaxial compression test with different number of 
RVE units using FEM simulations. The stress – strain 
curves obtained from the FEM simulations are shown 
in Figure 2c. The figure shows that the stress – strain 
curves converge as the RVE size increases. It should be 
noted that the stress – strain curve of a 1� 1� 1 RVE 
with periodic condition fits with those of larger RVE 
sizes (e.g. 3� 3� 3), demonstrating that the experi
ments correspond to numerical simulations of an RVE 
with periodic conditions.

3. Results and discussion

3.1. Training results

The performance of the 3D-CGAN can be evaluated 
based on the similarity and stability of the training 
results. Here, similarity refers to the agreement 
between input labels (targets ρ and E) and output 
labels (ρ and E of the generated structures). We 
evaluated the similarity using a risk function, that 
is, the mean squared error (MSE) of the sum of ρ 
and E: 

MSE ¼ 1
n
Pn

i¼1
ρi � ρ̂i
� �2

þ Ei � Êi
� �2

� �

(3) 

where n denotes the total number of labels sampled 
from the available ρ � E data space. To reduce the 
error, n was set to 1024 at each generation. ρ 
denotes the input relative density, ρ̂ denotes the 
output relative density, E denotes the input 
Young’s modulus, and Ê denotes the output 
Young’s modulus. To stabilize the training process, 
the relative density and Young’s modulus were 
normalized to the range 0–1. A smaller MSE indi
cates better similarity between the input and output 
labels, as well as better performance of the 3D- 
GAN.

The stability refers to a stable training process. 
In the 3D-CGAN, the generator and discriminator 
models were trained simultaneously, with the goal 
of finding a Nash equilibrium between the two 
models. Consequently, the training process aims 
to find an equilibrium between two forces rather 
than a minimum. The stability can be quantita
tively evaluated in terms of the discriminator 
and generator losses (see Appendix A for the 
definition).

Figure 3b displays the MSE and loss versus the 
training epoch using 10,000 datapoints. The MSE 
curve consists of two stages: the MSE decreases 
initially before gradually converging and finally 
attains a minimum at approximately 0.01 after 
epoch 50. This shows that the 3D-CGAN can be 
trained to converge after finite epochs. The low 
value of the MSE shows that the trained 3D- 
CGAN has learned to generate Voronoi lattices 
with a target ρ and E. The loss curves show the 
typical pattern of a reliable GAN training proce
dure, that is, both losses are slightly erratic early in 
the run before stabilizing after approximately 50 
epochs. The losses converge to a stable equilibrium, 
proving the stability of the training process. The 
convergence of the MSE and losses demonstrates 
the robustness of the 3D-CGAN and the stability of 
the training process.
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3.2. Inverse design of architected cellular 
materials

Given that the training results were robust and stable, 
we managed to exploit the trained 3D-CGAN for the 
controllable generation of Voronoi lattices. The 
inverse design adhered to the following procedure: 
the 3D-CGAN received a label (ρ and E) and then 
yielded several voxelized Voronoi lattices with the 
target ρ and E. To demonstrate the flexibility of the 
trained 3D-CGAN, Voronoi lattices were generated 
with target labels randomly selected from the ρ–E 
data space. Figure 3c compares the input labels (tar
gets ρ and E) and output labels (ρ and E of the gener
ated structures) of 1024 randomly generated Voronoi 
lattices. Each coordinate of the scatter corresponds to 
an input ρ or E and the output ρ or E. The difference 
between the input and output labels can be evaluated 
by linearly fitting these scatters (X ¼ Y). As shown in 
Figure 3c, these scatters converge to the bisection line, 
forming a narrow region. The distributions of the 
user-input and 3D-CGAN-output values are also com
pared in Figure 3c. The mean values of the user-input 
and 3D-CGAN-output relative densities are 0.3068 
and 0.3165, and the variances of the user-input and 
3D-CGAN-output relative densities are 0.0132 and 
0.0123, respectively. The mean values of the user- 
input and CGAN-output Young’s moduli are 125.1 
and 123.5 MPa, and the variances of the user-input 
and CGAN-output Young’s moduli are 10332 and 
10117 MPa, respectively. This indicates that the 
trained 3D-CGAN has learned to generate Voronoi 
lattices with the target ρ and E. In addition, these 
results also prove the successful implementation of 
controllable inverse design, making it unique from 
the forward design method, where Voronoi lattices 
are generated by Voronoi tessellation without assigned 
ρ and E.

To entirely explore the capability and applicability of 
the 3D-CGAN, we compared the data spaces of the real 
Voronoi lattices and those of the 3D-CGAN-generated 
Voronoi lattices in the relative density – Young’s mod
ulus relationship map in Figure 5. We first input the 
target properties inside the data space of the real 
Voronoi lattices to the 3D-CGAN, and we then plotted 
the properties of the 3D-CGAN-generated Voronoi 
lattices in Figure 5. The data space of the real Voronoi 
lattices refers to the ribbon region in the relative den
sity – Young’s modulus relationship map in Figure 1b. 
It can be observed that the properties of the 3D-CGAN- 
generated Voronoi lattices can occupy the data space, 
further demonstrating that the 3D-CGAN possesses the 
ability to generate Voronoi lattices with properties akin 
to the dataset. To explore the capability of generating 
Voronoi lattices with properties outside the dataset, we 
tried to input target properties outside the data space of 
the real Voronoi lattices. The results revealed that the 
trained 3D-CGAN can barely generate Voronoi lattices 
with properties outside the data space but approaching 
the border of the property space, as shown in Figure 5. 
This can be attributed to the training target of the 3D- 
CGAN: the 3D-CGAN was trained to learn to generate 
Voronoi lattices that not only look real but also have the 
target properties. To achieve the target properties, the 
3D-CGAN learned to deceive the calculator that was 
initially trained with the data space of the real Voronoi 
lattices. Consequently, it was difficult for the 3D-CGAN 
to generate Voronoi lattices in the whitespace beyond 
the data space.

To demonstrate the benefits of the 3D-CGAN in 
terms of the computational cost and accuracy, we 
compared the generation processes of the inverse 
and forward designs. The inverse design was imple
mented using the trained 3D-CGAN to generate 
a given number of geometries with a target property 
(ρ ¼ 0:3 and E ¼ 90 MPa). The code execution time 
was measured according to the computational cost. 

Property space of the 
real architectures 

Outside property space of 
the real architectures 

Figure 5. Properties of the 3D-CGAN-generated Voronoi lat
tices covering the relative density-Young’s modulus relation
ship map. Blue dots represent properties of 3D-CGAN- 
generated Voronoi lattices that were generated by inputting 
target properties inside the data space, and the orange dots 
represent those generated by inputting target properties out
side the data space.

Figure 6. Computational cost and accuracy of the inverse 
design by 3D-CGAN and forward design. The computational 
cost was determined using the CPU time of code execution, 
and the accuracy was measured using the MSE based on the 
target property and the property of the generated geometries.
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For the forward design, it is clear that one can directly 
generate a large number of geometries using Voronoi 
tessellation and calculate their properties, and then 
select the desired geometries with target properties. 
The computational cost of the forward design was 
determined using the code execution time required 
for running the Voronoi tessellation and numerical 
homogenization. All codes were run on a MacBook 
with an M1 chip. Figure 6 compares the computa
tional costs between the inverse and forward designs. 
The results show that the time require to execute the 
forward design on a central processing unit (CPU) is 
greater than that required for an inverse design based 
on the trained 3D-CGAN by a factor of 1000. For 
example, generating 128 Voronoi lattices 3D-CGAN 
requires approximately 5� 104 s using the forward 
design but only 53 s using 3D-CGAN, which is sig
nificantly faster than that required to generate opti
mized 3D geometries using Solid Isotropic Material 
with Penalization (SIMP) topology optimization 
[67,68]. It is clear that topology optimization can 

generate an optimized 2D geometry in a short time. 
However, a longer time is required to generate a batch 
of optimized 3D geometries using topology optimiza
tion than that required by the 3D-CGAN [69]. In 
addition, when multiple constraints (e.g. Young’s 
modulus, Poisson’s ratio, yield strength, and porosity) 
are required in topology optimization, the computa
tional cost may be rapidly increased. However, the 
time can barely change for the 3D-CGAN because 
only the labels of the training dataset are to be 
replaced. We also calculated the MSE using the target 
property and the property of the generated geometries. 
The results show that the MSE of the 3D-CGAN- 
generated lattices is approximately 0.1, which is better 
than that for the forward design of randomly direct 
generation (around 0.21) (Figure 6).

To visualize the training results clearly, Figure 7 com
pares several real Voronoi lattices (generated using 
Voronoi tessellation) and 3D-CGAN-generated Voronoi 
lattices. Similar to real Voronoi lattices, these voxelized 
Voronoi lattices have a ligament-channel bicontinuous 

Relative density 
(input) 0.1 0.2 0.3 0.4 0.5

Relative density  
(output) 0.1109 0.2097 0.3043 0.4052 0.4899

Young’s modulus 
(input), [MPa] 5 30 70 160 250

Young’s modulus 
(output), [MPa] 5.438 31.32 73.12 167.3 246.8

Young’s modulus 
(voxelized samples of 
experiments), [MPa]

5.912 23.13 83.12 176.1 283.6

Young’s modulus 
(smoothed samples of 
experiments), [MPa]

6.351 25.31 84.13 177.8 284.1

Young’s modulus 
(simulation), [MPa] 4.555 26.47 68.34 163.0 242.0

Real Voronoi lattices
(from dataset) 

3D-CGAN-generated 
Voronoi lattices
(voxelized)

After NURMS process 
(smoothed)

xy
z

xy
z

xy
z

Figure 7. 3D-CGAN generated Voronoi lattices with different relative densities and Young’s moduli before and after surface 
smoothing. The relative densities and Young’s moduli were validated through experiments and simulations.
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network. Additionally, the input and output relative den
sities and Young’s moduli show significant agreement, 
further demonstrating that the 3D-CGAN can generate 
Voronoi lattices with the target ρ and E. It should be noted 
that a few isolated voxel clusters could be found in some 
3D-CGAN-generated Voronoi lattices, which can be 
attributed to the transposed convolution layers in the 
generator that are provided with random noise as an 
input. These isolated voxel clusters can be removed by 
filtering the isolated voxels after generation. The 3D- 
CGAN is trained in an adversarial feedback loop to gen
erate realistic geometries, which indicates that the 3D- 
CGAN-generated Voronoi lattices appear realistic. As 
the 3D-CGAN-generated Voronoi lattices are generated 
from random noise, these Voronoi lattices are similar but 
distinct from the real geometries and themselves. In addi
tion, for bone implant application, we smoothed the sur
face of the generated Voronoi lattices using the non- 
uniform rational mesh smooth (NURMS) method 
Figure 7).

3.3. Validation via experiments and simulations

We further validated the mechanical properties and 
deformation behaviors of the 3D-CGAN generated 
Voronoi lattices using uniaxial compression tests. 
Figure 8a displays a generated Voronoi lattice after 

surface smoothing, showing a gradual deformation 
under a progressive compression strain. This suggests 
that some local fractures appeared under compressive 
loading (the red circles in Figure 8a). The ligament 
crack can be attributed to the local stress concentra
tion owing to the geometrical irregularity and brittle
ness of the 3D-printed resin. These local fractures 
contribute to the sudden drop in the stress – strain 
curve compared to that obtained from the experimen
tal compressive test (Figure 8b). This result suggests 
that the 3D-printed resin is not a suitable material for 
applications in scaffolds because of its brittleness, 
which is one of the reasons why many bone implants 
are fabricated with alloys [29,32,70,71].

However, the aim of using the 3D-printed resin in 
this study was to validate the stiffness. Consequently, 
the Young’s modulus of each sample was calculated 
from the linear elastic region of the stress – strain 
curves. The 3D-CGAN generated Voronoi lattices 
before and after the NURMS smoothing process 
were prepared and evaluated using compression 
tests. The calculated Young’s moduli of these samples 
are compared in Figure 7. Although a sample becomes 
slightly stiffer after surface smoothing (no more than 
10%), the Young’s moduli calculated from the linear 
elastic regions showed a significant agreement with 
the target values, demonstrating the accuracy of the 
trained 3D-CGAN (Figure 7b). The results prove that 
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Figure 8. Deformation behavior of a 3D-CGAN generated Voronoi lattice. (a) FEM simulation and experimental results of the 
Voronoi lattice deforming under increasing compressive strain. (b) Stress–strain curves obtained from FEM simulations and 
uniaxial compression tests. The sudden drop in stress during compression corresponds to the local fractures appearing in the 3D- 
printed sample.
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the NURMS method can be combined with a CNN to 
generate smoothed geometries with target stiffnesses.

The mechanical properties were validated using 
FEM simulations. Compared with a 3D-printed sample 
consisting of 3� 3� 3 unit cells, the geometry in the 
FEM simulation had only one unit cell owing to the 
application of periodic conditions. Figure 8a shows the 
progressively deformed configurations of the smoothed 
Voronoi lattice. This demonstrates that the stress is 
concentrated in the middle regions of the ligaments, 
as well as the contact region of the surfaces. Moreover, 
based on a comparison between the experimental and 
simulation results, the stress – strain curves in the 
linear elastic region showed a significant agreement, 
demonstrating that the use of FEM simulations was 
a robust approach to predict the stiffness of such archi
tected materials. Additionally, it is striking to note that 
the Young’s moduli obtained from the experimental 
and simulation results were close to the target values, 
further proving that the trained 3D-CGAN demon
strates powerful capacity for the inverse design of 
Voronoi lattices.

4. Conclusions

Herein, we developed a deep learning framework for 
the inverse design of voxelized Voronoi lattices. 
A 3D-CGAN neural network was trained using 
10,000 randomly created Voronoi lattices and their 
labels (relative density and Young’s modulus), based 
on supervised learning. The trained 3D-CGAN was 
capable of rapidly generating 3D Voronoi lattices 
with the desired target relative density and Young’s 
modulus. Thus, this study demonstrates the potential 
application of Voronoi lattices in tissue engineering, 
where artificial scaffolds can be inversely generated 
using a given target relative density and Young’s 
modulus. We expect the scope of this study to be 
extended to the inverse design of architected cellular 
materials with other target properties by replacing 
the labels – for example, diffusivity, permeability, 
and conductivity – for the sake of energy storage 
and conservation [33,72,73]. Finally, although we 
only focused on a typical geometry (Voronoi lattices) 
in this study, the proposed approach has the potential 
to combine other geometries created using other 
methods, such as triply periodic minimal surfaces, 
spinodal architectures, and foams [30,31,64], to 
enable the inverse design of architected cellular mate
rials inside and outside the material property 
space [57].
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Appendix A. Details of 3D-CGAN

A 3D-CGAN is a framework used for the controllable gen
eration of Voronoi lattices using adversarial process estima
tion. Three modules of deep neural networks (i.e., 
a generator, discriminator, and calculator) constitute the 
3D-CGAN, and these modules are trained for different 
purpose. The generator generates 3D arrays of Voronoi 
lattices with target labels (relative density and Young’s mod
ulus) from the latent space. It learns to deceive the discri
minator and calculator simultaneously by generating 
geometries that look real and possess the desired target 
properties. The discriminator evaluates whether its input 
(a 3D array of a geometry) is generated by the generator 
or sampled from the “real” data. The calculator serves as an 
FEM simulator and predicts the relative density and 
Young’s modulus of a given input (3D array of geometries). 
The training process of the 3D-CGAN can be regarded as 
constituting three players in a minimax game, and the 
objective can be stated as follows: 

θ̂D ¼ arg min
θD

fLDðtD;DðX; θDÞÞ

þ LDðuD;DðGðZ; L; θGÞ; θDÞÞg

(A1) 

θ̂G ¼ arg max
θG

fLDðuD;DðGðZ; L; θGÞ; θDÞÞ

� αLCðL;CðGðZ; L; θGÞ; θCÞÞg

(A2) 

θ̂C ¼ arg max
θC

fLSðL; SðX; θCÞÞg (A3) 

where D, G, and C refer to the discriminator, generator, and 
calculator, respectively; L denotes the loss functions (binary 
cross-entropy function) of the three modules; and tD and uD 
denote the target labels. To mitigate the overconfidence of 
the 3D-CGAN, we penalized the discriminator and genera
tor using label smoothing. This was accomplished by setting 
our target labels as random numbers: tD 2 ½0:7; 1:2� and 
uD 2 ½0; 0:3� [74, 75]. X 2 R n�p denotes the training set 

(3D arrays of voxelized Voronoi lattices) and was 
sampled randomly from the dataset with a batch size of 
32. Here, θ denotes the sets of parameters of the three 
modules, L 2 R n�l denotes the labels of the input training 
set, X (i.e., normalized relative densities and Young’s 
moduli), Z 2 R n�l denotes the one-dimensional latent 
variable with a size of 128, and α is a learning parameter 
and was set to 0.1.

Adam optimization was implemented in the training 
process to optimize the parameters in the 3D-CGAN. The 
learning rates of the Adam optimizer were set to α = 0.0001 
and β1 ¼ 0:5. The Wasserstein distance was used to improve 
the quality of the generated samples. The gradient penalty 
regularized the discriminator in the 3D-CGAN to assist the 
convergence, and its parameter was set to 100. The batch 
size for training was set to 32, and the epoch for training was 
set to 200. A dataset consisting of 10,000 datapoints was 
used to train the 3D-CGAN. The details of the three neural 
network structures are listed in Tables A1–A3. Thus, the 
generator consists of a fully connected layer, batch normal
ization, dropout, and a 3D transposed convolutional layer, 
and it uses activation functions including Leaky ReLU and 
tanh; the discriminator consists of a fully connected layer, 
dropout, and 3D convolutional layer and uses activation 
functions including Leaky ReLU and tanh; the calculator 
consists of six 3D convolution blocks with a 3D max pooling 
layer in each of them, and it finally consists of three fully 
connected layers. As the Voronoi lattices are triply periodic, 
we applied circular padding in the convolutional layers for 
both the up and down sampling processes.

The training process of the 3D-CGAN was conducted 
using TensorFlow on a single NVIDIA RTX A6000 graphic 
card on Linux system. The calculator was first trained using 
supervised learning, and its weights were used to train the 
discriminator and generator. The calculator was a linear 
regression model that used a 3D array of Voronoi lattices 
as an input and yielded the predicted relative densities and 
Young’s moduli as outputs. To investigate the effect of the 
number of datapoints on the performance of the calculator, 

Table A1. Neural network structure of the generator.
Neural network types Kernel size Resampling Input array shape Output array shape

Concatenate(Z, L) - - 128 + 2 130
Dense + BatchNormalization + Reshape - - 130 2 × 2 × 2 × 512
3D transposed convolution + BatchNormalization + Leaky ReLU + Dropout (0.3) 4 × 4 Up 2 × 2 × 2 × 512 4 × 4 × 4 × 256
3D transposed convolution + BatchNormalization + Leaky ReLU + Dropout (0.3) 4 × 4 Up 4 × 4 × 4 × 256 8 × 8 × 8 × 128
3D transposed convolution + BatchNormalization + Leaky ReLU + Dropout (0.3) 4 × 4 Up 8 × 8 × 8 × 128 16 × 16 × 16 × 64
3D transposed convolution + BatchNormalization + Leaky ReLU + Dropout (0.3) 4 × 4 Up 16 × 16 × 16 × 64 32 × 32 × 32 × 32
3D transposed convolution 4 × 4 Up 32 × 32 × 32 × 32 64 × 64 × 64 × 1
Sigmoid - - 64 × 64 × 64 × 1 64 × 64 × 64 × 1

Table A2. Neural network structure of the discriminator.
Neural network types Kernel size Resampling Input array shape Output array shape

Conv3D + LeakyReLU + Dropout (0.3) 4 × 4 Down 64 × 64 × 64 × 1 32 × 32 × 32 × 16
Conv3D + LeakyReLU + Dropout (0.3) 4 × 4 Down 32 × 32 × 32 × 16 16 × 16 × 16 × 32
Conv3D + LeakyReLU + Dropout (0.3) 4 × 4 Down 16 × 16 × 16 × 32 8 × 8 × 8 × 64
Conv3D + LeakyReLU + Dropout (0.3) 4 × 4 Down 8 × 8 × 8 × 64 4 × 4 × 4 × 128
Conv3D + LeakyReLU + Dropout (0.3) 4 × 4 Down 4 × 4 × 4 × 128 2 × 2 × 2 × 256
Conv3D + LeakyReLU + Dropout (0.3) 4 × 4 Down 2 × 2 × 2 × 256 1 × 1 × 1 × 512
Flatten - - 1 × 1 × 1 × 512 512
Dense - - 512 1
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we trained the calculator using different datasets. For each 
training dataset, 80% of the datapoints were used as the 
training set, and 20% of the datapoints were used as the 
testing set. It required approximately 10 h to train 200 
epochs using a dataset consisting of 10,000 datapoints. 
Figure A1a compares the MSE of the testing set for different 
numbers of datapoints. It should be noted that it can be 
difficult for the calculator to converge if the datapoints are 
less than 1000. However, with an increase in the number of 
datapoints, the calculator converged, and the MSE 
decreased, indicating that an increasing number of data
points was beneficial for the training. The MSE converged 
to near 0.0001, though it is hard to reduce it further, even 
bigger datapoints were utilized.

To save training time and resources, we selected 10,000 
datapoints for the training process. A more quantitative 
evaluation of the calculator is shown in Figure A1b, wherein 
the reference and predicted values are compared in terms of 
the relative densities and Young’s moduli. The comparison 
between calculator-predicted and reference values showed 
an excellent agreement, proving the accuracy of the trained 
calculator. The well-trained calculator was saved as check
points and imported when training the generator and dis
criminator. Training the generator and discriminator was 
more time consuming, and it cost approximately 32 h to 
train 10,000 datapoints for 200 epochs. After the three 
modules were trained, the 3D-CGAN was used for the 
inverse design of voxelized Voronoi lattices.

Table A3. Neural network structure of the calculator.
Neural network types Kernel/pool size Resampling Input array shape Output array shape

Unit 1 Conv3D 3 × 3 - 64 × 64 × 64 × 1 64 × 64 × 64 × 16
Conv3D 3 × 3 - 64 × 64 × 64 × 16 64 × 64 × 64 × 16
3D max pooling 2 × 2 Down 64 × 64 × 64 × 16 32 × 32 × 32 × 16

Unit 2 Conv3D 3 × 3 - 32 × 32 × 32 × 16 32 × 32 × 32 × 32
Conv3D 3 × 3 - 32 × 32 × 32 × 32 32 × 32 × 32 × 32
3D max pooling 2 × 2 Down 32 × 32 × 32 × 32 16 × 16 × 16 × 32

Unit 3 Conv3D 3 × 3 - 16 × 16 × 16 × 32 16 × 16 × 16 × 64
Conv3D 3 × 3 - 16 × 16 × 16 × 64 16 × 16 × 16 × 64
3D max pooling 2 × 2 Down 16 × 16 × 16 × 64 8 × 8 × 8 × 64

Unit 4 Conv3D 3 × 3 - 8 × 8 × 8 × 64 8 × 8 × 8 × 128
Conv3D 3 × 3 - 8 × 8 × 8 × 128 8 × 8 × 8 × 128
3D max pooling 2 × 2 Down 8 × 8 × 8 × 128 4 × 4 × 4 × 128

Unit 5 Conv3D 3 × 3 - 4 × 4 × 4 × 128 4 × 4 × 4 × 256
Conv3D 3 × 3 - 4 × 4 × 4 × 256 4 × 4 × 4 × 256
3D max pooling 2 × 2 Down 4 × 4 × 4 × 256 2 × 2 × 2 × 256

Unit 6 Conv3D 3 × 3 - 2 × 2 × 2 × 256 2 × 2 × 2 × 512
Conv3D 3 × 3 - 2 × 2 × 2 × 512 2 × 2 × 2 × 512
3D max pooling 2 × 2 Down 2 × 2 × 2 × 512 1 × 1 × 1 × 512
Flatten + Dense - - 1 × 1 × 1 × 512 256
Dense 256 128
Dense - - 128 2

(a) (b)

Figure A1. Performance of the calculator. (a) MSE versus training epoch using different numbers of datapoints. (b) Reference 
against calculator-predicted relative density and Young’s modulus.
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