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Partially Self-pumped
Fiber Fuse Propagation

through a White Tight-buffered

Single-mode Optical Fiber

Shin-ichi TODOROKI NIMS, Japan
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Date: 8 Mar. (Thu) 2012, 16:30–17:00 (PSC)

Venue: Los Angeles Convention Center (Room 503)

Abstract

The propagation threshold power through a white tight-buffered fiber was found
to be 3% less than that through an acrylate-coated fiber because the pigments in
the buffer backscatter the visible emission that pumps a fuse.
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How much the minimum power is

for fiber fuse propagation?
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It depends on the fiber you use.

SMF HAF PCF<<
×10
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How much the minimum power is

for fiber fuse propagation?

SMF
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Pth also depends on the reporters .

Why?
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Initiation Difficult to ignite a fuse at ∼Pth
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Their definition Power when a fuse disappeared
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My definition Minimum power for propagation
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Today’s talk −3% with white tight-buffer

SMF−28e
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Acrylate−coated

+ Tight buffer

250 µm

900 µm

Why Pth depends on fiber coatings?
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OVERVIEW

Partially self-pumped fiber fuse propagation

Energy balance

How the tight buffer gives some energy to a fuse?

Evidence

How this mechanism at ∼Pth is proved?

Self-pumping

What occurs if a fuse is pumped at >>Pth?
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Energy balance

~W

Laser light Optical fiber Hollow damage

Dissipative soliton :
Akhmediev (’08)

Temperature

Reaction zone
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D
∂2T

∂x2
− k(T − T0)

How this energy flow is modified by a tight buffer?
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Energy balance IO modification by tight buffer

• Input

– Laser

–

• Output

– Heat

– Light

Temperature

Reaction zone

IN
OUT

Self-pumping
ր
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Energy balance Heat flow vs. fusing speed

~W

~mm

~msec

Laser light

Propagation

Heat conduction
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Energy balance Light flow via tight buffer

• White pigments
backscatter the emission

• that is absorbed by plasma
& SiO in the glass melt

Slide 14

'

&

$

%

Energy balance Light flow along the fiber

Tight buffer
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OVERVIEW

Partially self-pumped fiber fuse propagation

Energy balance
Back-scattered visible emission possibly pumps a fuse.

Evidence

How this mechanism at ∼Pth is proved?

Self-pumping

What occurs if a fuse is pumped at >>Pth?

Slide 16

'

&

$

%

Evidence Void interval vs. Power (∼Pth)

SMF
1480 nm

3.5 W
Periodicity
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Evidence Void train left in damaged fibers

1310nm
1.16W vs 1.15W
<Pth >Pth
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Evidence Ultra-high speed videography

1024-step

4µs / frame

1µs-exposure
    w/ ND filters

128x16

Photron

Wavelength:
380–790nm

Fiber
laser

1480nm

ND filter

SMF-28

Zoom lens
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Evidence In situ observation & void train
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Evidence 2-mode switching

• Dark & fast w/ periodic voids

• Flash & slow w/o voids

N5mm: Density of
bullet-like voids
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Evidence N5mm increased before termination
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Evidence N5mm through a coated segment
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N
5m

m

0

20

40

60

80

100

Propagation

White oil paint

1.19 W, 1310 nm

200 100 0 −100

>Pth

Position (mm)

0

20

40

60

80

100

Propagation

Black oil paint

1.19 W, 1310 nm

200 100 0 −100

>Pth

Fiber
Laser

Stabilized through white oil paint
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Evidence White protective layers everywhere

Ribbon cables, Ceramic (ZrO2) ferrules, etc.
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OVERVIEW

Partially self-pumped fiber fuse propagation

Energy balance
Back-scattered visible emission possibly pumps a fuse.

Evidence
A self-pumped fuse leaves a stabilized void pattern.

Self-pumping

What occurs if a fuse is pumped at >>Pth?
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Self-pumping Void interval vs. Power (>>Pth)
9 W

7 W

5 W

3.5 W

No apparent difference
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Self-pumping Plasma shape vs. Power (>>Pth)

+Self-pumping
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Self-pumping Different temperature profiles

OFF

<7µsec

? ?

+Self-pumping
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Self-pumping Frozen “void formation cycle”

• 1.17 m/s
⇓

one void
per 18.7 µs

1480nm 9W

Λl 1+2 l 2

• Need statistical analysis

Void length normalization: l′1+2 =
l1+2

Λ
, l′2 =

l2

Λ
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Self-pumping l′2-distribution
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+Self-pumping

• Longer quenching time promotes void separation
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Self-pumping l′1+2-distribution

Acrylate−coated
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Self-pumping makes quenching time longer ...

• and promotes void separation
‖

bridge formation
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+Self-pumping

• A bridge appears only after the quench starts.
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Self-pumping No bridge in “in situ image”

• Quenching promotes bridge formation.
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Self-pumping Quenching during propagation

Propagation

+Self-pumping

Q
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• Bridge formation
⇐= Melt incl. a cavity being quenched
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SUMMARY

Partially self-pumped fiber fuse propagation

Energy balance
Back-scattered visible emission possibly pumps a fuse.

Evidence
A self-pumped fuse leaves a stabilized void pattern.

Self-pumping
Longer quenching time promotes void separation.

Fiber coatings promote self-pumping: Pth ց
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