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Abstract 

We have calculated inelastic mean free paths (IMFPs) for 41 elemental solids (Li, Be, 

graphite, diamond, glassy C, Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Ge, Y, Nb, Mo, 

Ru, Rh, Pd, Ag, In, Sn, Cs, Gd, Tb, Dy, Hf, Ta, W, Re, Os, Ir, Pt, Au, and Bi) for electron 

energies from 50 eV to 30 keV. The IMFPs were calculated from experimental optical data 

using the full Penn algorithm for energies up to 300 eV and the simpler single-pole 

approximation for higher energies. The calculated IMFPs could be fitted to a modified form 

of the Bethe equation for inelastic scattering of electrons in matter for energies from 50 eV to 

30 keV. The average root-mean-square deviation in these fits was 0.48 %. The new IMFPs 

were also compared with IMFPs from the predictive TPP-2M equation; in these comparisons, 

the average RMS deviation was 12.3 % for energies between 50 eV and 30 keV. This RMS 

deviation is almost the same as that found previously in a similar comparison for the 50 eV to 

2 keV range. Relatively large RMS deviations were found for diamond, graphite, and cesium. 

If these three elements were excluded in the comparison, the average RMS deviation was 

9.2 % between 50 eV and 30 keV. We found satisfactory agreement of our calculated IMFPs 

with IMFPs from recent calculations and from elastic-peak electron-spectroscopy 



  2/60	
 

experiments. 

 

INTRODUCTION 

Data for elastic and inelastic scattering of electron in solids are needed for 

determining the surface sensitivity of electron spectroscopies such as Auger-electron 

spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) and for quantitative 

analyses with these techniques.1,2 The inelastic mean free path (IMFP) is the key material 

parameter that has been used to describe inelastic scattering of the detected signal electrons in 

AES and XPS as well as of the primary electrons in AES. 

We have previously reported calculations of IMFPs of 50 eV to 2000 eV electrons 

from experimental optical data for 41 elemental solids, 15 inorganic compounds, and 14 

organic compounds, as well as analyses of these results.3,4,5,6,7,8,9,10 The optical data were 

checked for internal consistency using two sum rules;11 these checks indicated that the optical 

data for the group of elemental solids and the group of organic compounds were more 

reliable than those for the group of inorganic compounds. We analyzed IMFPs for the groups 

of elemental solids and organic compounds to derive an equation, designated TPP-2M,7 based 

on the Bethe equation12 for inelastic scattering of electrons in matter. We found that the four 

parameters in the TPP-2M equation could be empirically related to several material 

parameters (atomic or molecular weight, density, number of valence electrons per atom or 

molecule, and the bandgap energy for non-conductors). The TPP-2M equation could then be 

used to estimate IMFPs for other materials over the 50 eV to 2 000 eV energy range, the 

range of practical interest for most AES measurements and for XPS performed with Al or Mg 

Kα X-ray sources. 
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In recent years, there has been growing interest in XPS and related experiments 

performed with X-rays of much higher energies for both scientific and technological purposes. 

So-called hard XPS is being applied with X-rays from synchrotron-light sources (with 

energies up to 15 keV) and with Cu Kα X-ray sources (with an energy of 8.048 keV) to 

characterize film composition and buried interfaces of multi-layer thin-film samples and 

powders.13,14,15 In these applications, the higher X-ray energies were needed to enable sample 

characterizations without removal of surface layers by ion sputtering. We have therefore 

extended our earlier work by calculating IMFPs for 41 elemental solids (Li, Be, graphite, 

diamond, glassy C, Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Ge, Y, Nb, Mo, Ru, Rh, 

Pd, Ag, In, Sn, Cs, Gd, Tb, Dy, Hf, Ta, W, Re, Os, Ir, Pt, Au, and Bi) and for electron energies 

from 50 eV to 30 keV.  

We describe briefly our IMFP algorithm and the sources of optical data we have used, 

present the new IMFP results, analyze the degree of consistency of IMFPs from the TPP-2M 

equation with the new IMFPs over the 50 eV to 30 keV range, and compare the new IMFPs 

with values from recent calculations and from elastic-peak electron spectroscopy (EPES).16,17 

We conclude with a summary. 

 

IMFP CALCULATIONS 

 Our method for IMFP calculations from experimental optical data has been 

described previously.3,4 We make use of the Penn algorithm18 which is expected to give useful 

results for electron energies above 50 eV.4 IMFPs were calculated at equal energy intervals on 

a logarithmic scale corresponding to increments of 10 % from 10 eV to 30 keV. We first give 

a summary of our implementation of the Penn algorithm and then describe the checks we 
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made of the optical data.  

 The IMFP λ for an electron of energy  in solids can be expressed as 

   

  ,     (1) 

  
 

where	
  is the electron velocity and  is its inverse lifetime due to inelastic-

scattering processes.18,19 

For electron energies between 10 eV and 300 eV, we calculated MI(k) using the full 

Penn algorithm (FPA): 
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where a0 is the Bohr radius, εL is the Lindhard model dielectric function,20 ε(ω) is the optical 

dielectric function, EF is the Fermi energy, ω is the frequency, q is the momentum transfer, 

and ωp is the free-electron plasmon frequency. 

For energies from 330 eV to 30 keV, we used the simpler single-pole approximation 

(SPA) or simple Penn algorithm to calculate MI(k).  In this approximation, 
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where 	
 is the Fermi velocity of a free-electron gas with plasmon frequency equal to 

ωp. From Eqs. (2) and (3), MI(k) in the SPA can be expressed as  

 

 

MI k( ) = 1
2πa0k

d ωp( )∫ Im 1
ε ωp( )

ln
ωp +ωp q( )

q 2
+
2
3ωp

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥
q2

q1

,                                   (4)

      

where ,  , and . Analytical expressions for 

 and   are given in Appendix A of Ref. 18.  

We note that the difference in IMFPs obtained using these two algorithms at 300 eV is 

very small (e.g., < 0.2 % for graphite). We also point out that we used the FPA in our previous 

IMFP calculations for energies less than 200 eV.4,5,7,10 

We show IMFPs for energies between 10 eV and 50 eV in the Figures below to 

indicate IMFP trends vs. electron energy; these results should be considered only as rough 

estimates. All kinetic energies are expressed with respect to the Fermi level. 

Table 1 contains material-property data used in the IMFP calculations or in the later 

analysis of the IMFP results. We show values of the atomic weight M, bulk density ρ (g cm-3), 

number of valence electrons per atom (Nv),7 free-electron plasmon energy 
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(  eV), bandgap energy (Eg), and Fermi energy (EF), a parameter used in 

the IMFP calculations.  

IMFPs were calculated from energy-loss functions (ELFs) that were obtained from 

experimental optical data or ELF measurements for each elemental solid. The sources of ELF 

data are listed in Table 2 for 25 of our solids;21,22,23,24,25,26,2728,29,30,31 ELF sources for the other 16 

solids are shown in Table 2 of Ref. 10. Since no direct measurements of optical constants 

were available for photon energies larger than about 50 eV for most of the solids, it was 

necessary to make use of atomic photoabsorption data for photon energies beyond the 

particular measurement range. This use of atomic data is not considered a serious source of 

error because the complex dielectric constant, , as a function of frequency, ω, for photon 

energies larger than about 50 eV is mainly determined by atomic properties except in the 

vicinity of core-electron excitation thresholds. The latter differences are unimportant in the 

IMFP calculation because integration is made of the energy-loss function over . In 

addition, the ELF  for photon energies above about 50 eV, and 

 can be obtained easily from photoabsorption cross sections. We point out we have 

made use of photoabsorption data for 22 solids (Mg, Ti, V, Cr, Fe, Co, Ni, Y, Nb, Mo, Ru, 

Rh, Pd, Hf, Ta, W, Re, Os, Ir, Pt, and Au) from Henke et al.22 that is more recent than the 

data used for our previous IMFP calculations.3,4 For some of these solids (Cr, Fe, Mo, Hf, Ta, 

W, Re, and Pt), it was necessary to make interpolations between two energy-loss regions, and 

we were guided in this process by measured transmission and reflection electron energy-loss 

spectroscopy (REELS) data.30-34 The resulting ELFs agreed better overall with the energy-loss 

data30,32,33,34,35 and resulted in smaller sum-rule errors (described below) for most of the solids 

than for our earlier IMFP work.3,4 For Co, we selected optical data from a recent analysis of 
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REELS data by Werner et al.27 for energy losses up to 70.5 eV because the resulting ELF was 

in much better agreement with the ELF from transmission electron energy-loss experiments34 

than with the ELF obtained from optical experiments;30 the sum-rule errors were also 

appreciably smaller. A similar choice was made for Ti where there was improved agreement 

of the new ELF with the REELS data of Robins and Swan.32 Finally, we have chosen a set of 

optical data from Palik23 for gold since this data set gave an ELF in better agreement with 

transmission electron energy-loss experiments36 than the data set from Hagemann et al.21 that 

we used previously.3,4 We will later make comparisons of the IMFPs from the newer optical 

data with the IMFPs that we reported earlier. 

We checked the internal consistency of the ELF data through use of the oscillator-

strength sum rule (or f-sum rule) and a limiting form of the Kramers–Kronig integral (or KK-

sum rule).5,11 The f-sum can be evaluated as the total effective number of electrons per atom, 

, contributing to the inelastic scattering: 

 

 
 
Zeff = (2 / π

2Ωp
2 ) ΔE Im[−1 / ε(ΔE)]d(ΔE)

0

ΔEmax∫ ,                    (5) 

 

where , ,  is the density of atoms, and Na is 

Avogadro's number. When the upper limit  in Eq. (5) is equal to infinity,  should be 

equal to Z, the total number of electrons per atom. The KK-sum can be expressed as: 
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where n(0) is the limiting value of the refractive index at low photon energies (below those 

where absorption maxima are observed). In the limit , . We determined 

 and  from Eqs. (5) and (6) for each solid as a function of  up to a maximum 

value of 30 keV. For Z > 50 (Sn), we expect  to be less than Z because K-shell excitations 

cannot contribute to the integral of Eq. (5) when  is 30 keV (i.e., the K-shell binding 

energy of Sn is 29.2 keV and that of Sb is 30.5 keV). Although there are two electrons in the 

K shell, the contributions of these electrons to the f-sum will be less than 2.12 We have 

compared our evaluations of  for elements with Z ≥ 50 with Z – 1.65 since the average 

contribution of K-shell excitations to the f-sum integrals for four low-Z elements (Na, Al, K, 

and Sc) was 1.65.10  

 As examples, Figs. 1 and 2 show plots of  and  as a function of  for 

Al and Bi. The maximum values of  for each solid are in very good agreement with the 

expected values (Z for Al and Z – 1.65 for Bi), and the maximum values of  are similarly 

very close to the expected value (unity). For each element, the differences are less than 3 %. 

Table 3 lists errors in the f-sum and KK-sum rules for each elemental solid, that is, the 

differences between the computed values of Zeff and Peff and those expected from Eq. (5) (Z or 

Z – 1.65) and Eq. (6). The average root-mean-square (RMS) errors for the sets of ELF data 

based on the f-sum rule and KK-sum rules are 4.2 % and 7.7 %, respectively.  

 Figure 3 shows the relation between f-sum- and KK-sum-rule errors. We see from 

Fig. 3 and Table 3 that there is one solid for which the f-sum-rule error is slightly larger than 

10 % (Mg) and six solids for which the KK-sum-rule error is larger than 10 % (K, Nb, Rh, Pd, 

Sn, and Pt). Of these seven solids, the sum-rule errors for K and Nb are both of the same sign 

(negative in each case), indicating that their ELFs are systematically too small and thus their 
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calculated IMFPs will be too large. For 34 of our 41 elemental solids, the f-sum-rule and KK-

sum rule errors are both less than 10 %. 

 

IMFP RESULTS 

Table 4 shows IMFPs calculated from optical data for our 41 elemental solids for 

electron energies between 50 eV and 30 keV. Plots of the calculated IMFPs as a function of 

energy are shown as solid circles in Figs. 4-10. IMFPs are included in these plots for energies 

less than 50 eV to illustrate trends, but these data are not considered reliable.4 Sources of 

uncertainties of the calculated IMFPs are discussed elsewhere.1,6,16,37,38,39 The uncertainties of 

IMFPs for energies between 50 eV and 200 eV are expected to be larger than those for higher 

energies.16 Further comments on uncertainties of IMFPs for energies less than 200 eV are 

given in the Discussion section where we also make comparisons of our calculated IMFPs 

with those reported by several other groups. 

The plots of the calculated IMFPs in Figs. 4-10 show similar dependences on electron 

energy for energies greater than 200 eV. For lower energies, however, different dependences 

were found. The latter differences are associated with the different electronic properties and 

thus ELFs of each material.40 

Figure 11 shows plots of the ratio of the IMFPs in Table 4 for 18 of the 21 elements 

with the newer ELFs that we used here ( ) to the corresponding IMFPs that we published 

previously4 ( ). For the remaining three elements (Mg, Ni, and Pt), the IMFP changes were 

less than 1 %. For 10 of the 18 solids in Fig. 11, the IMFPs are smaller than the earlier values 

at an energy of 99.5 eV while at 992 eV the IMFPs are smaller for 11 of the solids. The 

largest changes occurred for Pd (a decrease) and for Re (an increase). While the ratios are 
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nearly constant for energies above about 300 eV, different energy dependences are seen for 

lower energies. The various magnitudes of the ratios in Fig. 11 and the different energy 

dependences are associated with the new ELFs that we adopted for the present IMFP 

calculations. The new IMFPs are believed to be more reliable because of the smaller sum-rule 

errors of the new ELFs compared to the sum-rule errors for our IMFPs published previously.4 

In our previous work,4,5,6,10 we analyzed the IMFP dependence on energy for each 

material with a modified form of the Bethe equation for inelastic electron scattering in 

matter:12,41 

 

λ =
E

Ep
2[β ln(γE)− (C / E)+ (D / E2 )]

,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (7) 

	
 

where λ is the IMFP (in Å), E is the electron energy (in eV), Ep is the bulk plasmon energy 

(in eV), as given in Table 1, and β, γ, C, and D are parameters. Satisfactory fits were made 

with Eq. (7) to the calculated IMFPs for energies between 50 eV and 2000 eV, and values of 

the parameters determined for each material. Equation (7) was thus a convenient analytical 

representation of the calculated IMFPs (e.g., for interpolation).  

The solid lines in Figs. 4-10 show fits of Eq. (7) to our new set of calculated IMFPs 

over the 54.6 eV to 29 732.6 eV energy range. Values of β, γ, C, and D from these fits are 

shown in Table 5 for each material. The quality of each fit was assessed from the RMS 

percentage difference, RMS: 

 

        ,                                             (8) 
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where  is the IMFP obtained from the fit, is the calculated IMFP (each for a particular 

energy ), and n = 64 is the number of electron energies listed in Table 4. Values of RMS are 

also shown in Table 5 for each material. The average of the RMS values in Table 5 was 

0.48 % and the maximum value was 0.94 % (for Co and Cu). These results were almost the 

same as those found in our previous fits of calculated IMFPs for the 50 eV to 2 000 eV 

energy range (average value of RMS = 0.40 %, maximum value of RMS = 0.87 % (for Sn)).4,10 

We again conclude that the modified Bethe equation provides a satisfactory description of the 

energy dependence of the calculated IMFPs in Table 4 over the 50 eV to 30 keV energy range. 

A useful check in our analysis is to determine values of β valid for ‘high’ electron 

energies. Such values, designated βopt, represent the slopes of Fano plots (described below) in 

the asymptotic Bethe region and can be obtained from the following relations:3 

 

            (eV-1 Å-1)                                                                   (9a) 
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2R Im[−1 / ε(ΔE)]d(ΔE)

0

ΔEmax∫
π2Ωp
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where  is the square of the dipole matrix element for all possible inelastic-scattering 

processes and R is the Rydberg energy. Table 5 shows values of βopt calculated from Eq. (9) 

where the upper limit of the integral has been chosen to be 30 keV. We see that values of β in 

Table 5 typically exceed those of βopt by amounts varying from 0 % to 10 %, with an average 

relative difference of 4.7 %. Similar results have been obtained previously and indicate that 



  12/60	
 

the asymptotic Bethe region may be reached only at higher energies.10,42 

We now evaluate the validity of the modified Bethe equation [Eq. (7)] in describing 

the energy dependences of our calculated IMFPs using three measures of the slopes of Fano 

plots for five illustrative solids (Li, Si, Ni, Ag, and Pt). A Fano plot (in which Ε/λ is plotted 

versus ) is a convenient means of testing whether a particular set of IMFP data is 

consistent with the original Bethe equation for inelastic scattering.12,41,43 The slope of a Fano 

plot,  at an energy , or equivalently , would be expected from Eqs. 

(7) and (9) to be given by, 

 

SLFP(ΔEmax ) = Ep
2βopt ,           (10) 

 

at sufficiently high electron energies (the so-called asymptotic Bethe limit) where the second 

and third terms in the denominator of Eq. (7) would be negligibly small). The dashed lines in 

Figs. 12 and 13 show plots of  from Eq. (10) for the five selected solids as a 

function of  where βopt has been determined from Eq. (9).  

 A second measure of  as a function of electron energy can be obtained 

directly from differences of values of Ε/λ: 

 

  SLFP(Ei ) =
Ei+1 λ(Ei+1)− Ei−1 λ(Ei−1)

ln(Ei+1 / Ei−1)
.            (11) 

 

The solid diamonds in Figs. 12 and 13 show values of  calculated for the same 

solids from Eq. (11) as a function of .  

 A third measure of  can be calculated by rearranging Eq. (7) and 
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differentiating to yield: 

 

 SLFP(Ei ) =
d(E / λ)
d lnE

= Ep
2 β +

C
E
−
2D
E2

⎛

⎝
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The solid lines in Figs. 12 and 13 show plots of  for the five solids as a function of 

 from Eq. (12) using values of β, C, and D from Table 5.  

We see that the plots of  from Eqs. (11) and (12) for each solid show 

similar dependences on energy although, as expected, the  values from Eq. (12), a 

relatively simple equation, do not show the structures revealed by  values from the 

IMFP data with Eq. (11). At our maximum values of E and  (30 keV), there is 

satisfactory agreement of the  and  values from Eqs. (10) and (11), 

with some differences from the  values from Eq. (12) for Ni and Pt that are 

probably associated with the limited validity of Eq. (7) in fitting the calculated IMFPs over a 

wide energy range.  

The plots for the low-Z elements Li and Si in Fig. 12 show structure that can be 

associated with contributions from valence-electron excitations (bulk plasmons), K-shell 

excitations (Li and Si), and L-shell excitations (Si). For the medium-Z (Ni and Ag) and high-

Z (Pt) elements, the plots in Figs. 12 and 13 show additional structure and larger variations 

than for Li and Si that are due to the additional inelastic-scattering channels that are available 

for the former solids. We note that Eq. (12) does not provide a good representation of the 

SLFP trends for Li and Si at low energies (E < 80 eV) in Fig. 12. That is, Eq. (7) is generally 

satisfactory for fitting the calculated IMFPs for energies down to 50 eV (cf. Figs. 4 and 5) but 

does not adequately describe the energy dependences for Li and Si at such low energies.  
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Equation (12) provides a generally good description of the SLFP energy dependence for Ni, 

Ag, and Pt over the 50 eV to 30 keV range.  

Figures 12 and 13 also illustrate how the second and third terms in the denominator of 

Eq. (7) are needed to fit the calculated IMFPs over the 50 eV to 30 keV energy range. For E > 

10 keV, however, these terms are negligible and the IMFP energy dependence can be 

described satisfactorily by the simple Bethe equation (i.e., Eq. (7) with C = D = 0). It is thus 

reasonable for the modified Bethe equation [Eq. (7)] to be useful not only for energy range 

for which it was originally applied (50 eV to 2 keV) but also for higher energies (i.e., up to 30 

keV as shown here). 

We previously analyzed IMFPs for a group of 27 elemental solids4 and a group of 14 

organic compounds7 that had been calculated from optical data for electron energies between 

50 eV and 2 000 eV. Simple expressions were found for the four parameters in Eq. (7) in 

terms of material properties:7 

    

                                            (13a) 

                                                                                         (13b) 

                                                                                    (13c) 

                                                                                   (13d) 

                                                                        (13e) 

 

Equations (7) and (13) represent our TPP-2M formula for estimating IMFPs in other 

materials. 

IMFPs calculated from the TPP-2M equation are shown in Figs. 4-10 as dashed lines 
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for each solid, and Table 6 shows values of the RMS deviations between these IMFPs and 

IMFPs calculated from optical data. The average RMS deviation for the 41 elemental solids 

over the 50 eV to 30 keV range is 12.3 %. This average deviation is almost the same as that 

found in a similar comparison for the 50 eV to 2 000 eV range (12.8 %). We see relatively 

large RMS deviations for diamond, graphite, and cesium in Table 6 (71.7 %, 47.9 %, and 

36.7 %, respectively); reasons for these large deviations have been discussed in a previous 

paper.10 If the RMS deviations for diamond, graphite, and cesium are ignored, the average 

RMS deviation for the remaining elements is 9.2 %.  This value is slightly better than the 

corresponding average RMS deviation of 10.2 % found with IMFPs for the 50 eV to 2000 eV 

range for our original group of 27 elements.7 We searched for but did not find any correlation 

between the RMS deviations in Table 6 and the sum-rule errors in Table 3. We also note that 

our calculated IMFPs for diamond are consistent with IMFPs determined from elastic-peak 

electron-spectroscopy (EPES) experiments by Zemek et al.44 and the IMFP calculations of 

Rehr et al.45 while our IMFPs for Cs are consistent with those calculated by Rehr et al.45 In 

addition, Kunz et al.46 analyzed XPS spectra of diamond and graphite that were obtained with 

8 keV X-rays and found that the ratio of the IMFPs of diamond and graphite was 0.95 (for an 

electron energy of 7 716 eV). This ratio is slightly larger than the corresponding ratio of our 

calculated IMFPs of 0.88. There remains, however, an inconsistency between our IMFPs for 

graphite and the IMFPs from the EPES experiments of Tanuma et al.47 (where the RMS 

difference was 27 % for energies between 100 eV and 30 keV). The large RMS deviations for 

diamond and cesium (and probably also the RMS deviation for graphite) in Table 6 are 

believed to be due mainly to limitations of the TPP-2M formula, as discussed in Ref. 10. The 

large RMS deviation for graphite might also be due to its anisotropic optical properties; such 
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anisotropies are neglected in the Penn algorithm. 

Figure 14 shows a plot of ratios of IMFPs calculated from TPP-2M to IMFPs 

calculated from optical data for the 41 elemental solids as a function of electron energy in 

order to assess visually the reliability of the TPP-2M equation for energies up to 30 keV. 

Ideally, these ratios should not change with energy and should be close to unity. For the 41 

solids, the ratios are nearly constant with energy for energies above 300 eV but there are 

often substantial changes at lower energies. For energies above 300 eV, values of the 

maximum of the IMFP ratio divided by the minimum of the IMFP ratio were less than 1.07 

for the 41 solids, and the average of these values was 1.03. For energies between 50 eV and 

300 eV, Fig. 14 indicates that the TPP-2M equation is less satisfactory in this energy range 

than at higher energies. We note that while the IMFP ratios for diamond, graphite, and Cs in 

Fig. 14 exceed 1.3 for all energies, the energy dependence of the TPP-2M equation is 

satisfactory for energies between 300 eV and 30 keV. 

 

DISCUSSION 

We will make comparisons here of our calculated IMFPs with results from recent 

calculations and from experiments. 

 

Calculated IMFPs 

 Powell and Jablonski16 described methods for calculating IMFPs in solids and 

analyzed calculated IMFPs for seven elemental solids (Al, Si, Ni, Cu, Ge, Ag, and Au) for 

which there were at least two independent sources of IMFP calculations and IMFP 

measurements for each solid. The calculated IMFPs had been obtained from experimental 
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optical data and algorithms generally similar to the Penn algorithm used here although 

different approaches were employed for selection and use of optical data and different 

technical approaches were chosen for the IMFP calculations. Nevertheless, the average RMS 

deviation of the calculated IMFPs from a function fitted to all of the calculated IMFPs for 

each of the seven solids was 4.4 %. 

 We now discuss results from several groups that have commented recently on the 

Penn algorithm for IMFP calculations. Mao et al.48,49 reported IMFPs for Al and Cu using two 

variations of the Penn algorithm, the so-called full Penn algorithm (FPA) and the single-pole 

approximation (SPA). Calculations with the FPA are more time consuming than the SPA since 

the former requires a triple integration whereas the latter requires only a single integration. In 

our first major report of IMFPs for 27 elemental solids and electron energies between 200 eV 

and 2 keV,3 we utilized the simpler SPA [Eq. (16) of Ref. 3] although in all later papers 

IMFPs were calculated with the FPA  for electron energies between 50 eV and an upper limit 

of either 200 eV or 300 eV [Eq. (14) of Ref. 3]. Due to a misunderstanding, Mao et al.48 

initially claimed that the SPA was used for all of our IMFP calculations but this claim was 

later corrected.49 Comparisons of our IMFPs calculated with the FPA and the SPA and of the 

Mao et al. IMFPs calculated with the FPA are shown in Figs. 15 and 16 for Al and Cu, 

respectively. We see substantial differences in the IMFPs from the FPA and the SPA for Al at 

energies less than 20 eV in Fig. 15 and much smaller differences for Cu in Fig. 16. This result, 

previously reported by Mao et al., is associated with the strong and well-defined bulk-

plasmon excitation in the energy-loss spectrum of Al and the neglect of single-electron 

excitations in the SPA.48,50 There is excellent agreement in our FPA IMFPs for Al and those of 

Mao et al. in Fig. 15 and satisfactory agreement for Cu in Fig. 16. The slight differences for 
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Cu at energies less than 100 eV are probably due to the selection of different sets of optical 

data in each calculation.  

 Denton et al.38 reported IMFP calculations for Al and Au that were based on the use 

of a function proposed by Mermin51 for describing outer-electron excitations. The Mermin 

function is an improvement over the Lindhard20 dielectric function utilized in the Penn 

algorithm in that it accounts for the finite lifetimes of the various excitations. The ELF due to 

outer-electron excitations is obtained from experimental optical data, as in our work, and is 

typically represented by a sum of Mermin functions describing the positions, strengths, and 

widths of contributing excitations. The ELF for Al outer-shell excitations is based on Mermin 

functions for describing valence-band and L-shell excitations while the ELF for Au outer-

shell excitations makes use of Mermin functions for valence-band and N-shell excitations.52 

The contributions to the ELFs from inner-shell excitations were represented by generalized 

oscillator strengths for isolated atoms with parameters related to experimental data.38 Denton 

et al. report that the parameters in their fits to the Al and Au optical ELFs were chosen in 

such a way that the fitted ELF reproduced the main trends of the optical ELF and satisfied the 

f-sum rule [Eq. (5)] for each solid.  

Denton et al.38 report significant differences (in their Fig. 7) between their IMFPs 

for Al and Au and those they show as coming from the “Penn model” for electron energies 

less than about 30 eV for Al and about 100 eV for Au. We will now discuss these differences. 

 Figures 17 and 18 show comparisons of the Denton et al. IMFPs for Al and Au with 

our results from both the FPA and the SPA. For Al, we see a generally high degree of 

consistency in Fig. 17 between our results from the FPA and the Denton et al. IMFPs but with 

some differences between 20 eV and 40 eV. For Au, we find much closer agreement between 
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IMFPs from the FPA and SPA in Fig. 18 at energies below 100 eV than for Al (as for Cu in 

Fig. 16). We also see good consistency of our IMFPs from the FPA with the Denton et al. 

IMFPs for energies above 200 eV and small but systematic differences at lower energies. The 

latter differences are much smaller than those shown by Denton et al.; for example, at 20 eV, 

Denton et al. show IMFPs from the “Penn model” as being more than twice those from their 

own calculations whereas our IMFPs are about 10 % larger than those of Denton et al. The 

largest difference between our FPA IMFPs and those of Denton et al. occurred at energies 

between 50 eV and 60 eV where the difference was 32 %. 

 The large differences shown by Denton et al. between their IMFPs and those from 

the “Penn model” for energies less than about 40 eV for Al and about 200 eV for Au probably 

arise from their use of the SPA for their evaluation of the latter IMFPs and/or from use of a 

different dispersion relation. We do not expect the SPA to be reliable for such low electron 

energies.1,2 Ding and Shimizu53 found that IMFP calculations from the SPA using optical data 

and a simple dispersion relation (in which the energy loss varied as the square of the 

momentum transfer) led to IMFPs for Ni, Cu, Ag, and Au that were up to approximately 

twice those found with Eq. 3(b) for energies between 10 eV and 100 eV. A similar 

comparison for Si showed substantial increases in the IMFPs for the simple dispersion 

relation from values with Eq. 3(b) for energies less than about 30 eV. Their SPA results with 

the simple dispersion relation for Au and Si are similar to those reported by Denton et al. as 

resulting from the “Penn model.” We note that Ding and Shimizu54 later reported small 

decreases of IMFPs for Cu and Au with the SPA and the simple dispersion relation compared 

to those found with Eq. 3(b) but these results were incorrect.55 

 De la Cruz and Yubero37 used a similar Mermin description of the dielectric 
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function to calculate IMFPs of Si, Ti, Ag, and Au for electron energies between 200 eV and 2 

keV. They do not present numerical values of their IMFPs but show in their Fig. 2 that their 

IMFPs are systematically smaller than those from “Penn’s approach.” While the differences 

vary with material, the largest occur for Au and range from about 7.5 % at 2 keV to about 

14 % at 200 eV. In the comparison of our IMFPs for Au with those obtained in the later work 

of Denton et al.38 (Fig. 18), the latter IMFPs were slightly larger than our results with both the 

FPA and SPA at 200 eV. The differences in the energy dependences of the IMFPs found by de 

la Cruz and Yubero and by Denton et al. may have resulted from the neglect of inner-shell 

excitations and to smaller integration limits in the IMFP calculations of the former authors.56 

We also note that the comparison by de la Cruz and Yubero with “Penn’s approach” is based 

on an IMFP calculation with the SPA and a simple quadratic dispersion relation. Ding and 

Shimizu,53 however, found that IMFPs with the quadratic dispersion relation for Au at 200 eV 

were larger by about 10 % than those obtained with the quartic dispersion relation. 

 Emfietzoglou et al.39 calculated IMFPs for liquid water, solid-DNA, and 

polymethylmethacrylate (PMMA) using different many-body local-field corrections to the 

Lindhard dielectric response function. They considered corrections proposed by Hubbard57 

(for exchange), Geldart and Vosko 58  (for exchange), Rice 59  (for screened exchange), 

Kleinman 60  and Langreth 61  (for exchange and correlation), and Corradini et al. 62  (for 

exchange and correlation). The latter correction formula was believed to be the most reliable 

and is widely used in time-dependent density functional theory.39 Emfietzoglou et al. report 

that inclusion of the Corradini et al. exchange and correlation correction results in decreases 

of IMFPs for liquid water of about 10 % for electron energies above 100 eV and of up to 

about 25 % for energies between 10 eV and 100 eV compared to IMFPs evaluated from the 
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full Lindhard dielectric function. The exchange and correlation corrections tested by 

Emfietzoglou et al. were applied to the screening electrons rather than to the energetic 

electron and, as a result, the screening is weaker and the IMFPs smaller.63 

 We note that other groups have used different types of exchange corrections in their 

IMFP calculations, as discussed by Powell and Jablonski who estimated that consideration of 

exchange for the energetic electron would increase IMFPs by between about 10 % and 15 % 

for electron energies between 50 eV and 100 eV.16 Tan et al.64 compared IMFPs for a group of 

ten organic compounds that had been calculated from the SPA without an exchange 

correction and with exchange corrections based on two models, one a formalism proposed by 

Ashley and Anderson65 and the other a modified Born-Ochkur approximation.66,67 Inclusion of 

exchange led to IMFP increases of about 25 % for the Ashley-Anderson model and about 

18 % for the modified Born-Ochkur model at an electron energy of 100 eV. The IMFP 

increases for an energy of 50 eV were about 43 % and 34 %, respectively. We note that Tan et 

al. used a simple quadratic dispersion relation and that their results would probably be 

different if they had chosen Eq. 3(b).  

 Finally, we wish to point out that there have been a number of first-principles 

calculations of IMFPs for energies less than about 50 eV,68,69,70 as reviewed by Echenique et 

al.71,72 These calculations are based on ab initio local-density theory in which the wave 

functions and corresponding energy for a given material are determined and then a dielectric 

function is calculated from that information. A self-consistent pseudopotential method with 

the local density approximation is used to obtain the exchange-correlation potential.69 The 

resulting dielectric function can be very sensitive to the wave functions and energy levels of 

the material, i.e., to details of the band structure. The calculated IMFPs agree reasonably well 
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with results of analyses of intensities for surface-shifted and non-surface-shifted core-level 

photoelectron peaks of the alkali metals, Be, and Si.73,74,75 The latter experiments provide a 

measure of what is now known as the effective attenuation length (EAL) which, for 

photoelectron emission angles less than about 60°, is less than the corresponding IMFP.1 The 

importance of band-structure effects and of an integrated approach for correlation and 

exchange has been shown in the results of similar ab initio calculations of the dielectric 

function, hot-electron lifetimes, plasmon dispersion relations, and dynamical structure factors 

that also agree well with experiment.71,72, 76 , 77 , 78 , 79 , 80 , 81 , 82  While the approach used by 

Emfietzoglou et al.39 of combining many-body exchange and correlation effects in an ad hoc 

manner with a phenomenological dielectric function may be viable for electron energies 

larger than about 50 eV, we believe that questionable results will be obtained for lower 

energies.68-82  

  

IMFPs from Experiments 

Elastic-peak electron spectroscopy (EPES) has been identified as the preferred 

experimental technique for determination of IMFPs.16 Measurements are typically made of 

ratios of intensities of elastically backscattered electrons for the sample of interest and a 

selected reference sample for a range of electron energies, and these ratios are compared with 

corresponding ratios from a model calculation in which the IMFP of the sample is a 

parameter and the IMFP of the reference sample is chosen from a reference source.16,17 We 

compare our calculated IMFPs with values from the EPES experiments of two groups who 

reported IMFPs for a large number of elemental solids.47 Sources of uncertainty in IMFPs 

from EPES experiments are discussed elsewhere.1,16 
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Tanuma et al. determined IMFPs by EPES for 13 elemental solids (graphite, Si, Cr, Fe, 

Cu, Zn, Ga, Mo, Ag, Ta, W, Pt and Au) and electron energies between 50 eV and 5 keV using 

a Ni reference sample.47 They also fitted the Bethe equation (Eq. (7) with C = D = 0) to their 

IMFPs for energies greater than 100 eV. The Bethe equation can be rewritten as:  

 

                                                                                             (14) 

 

It is then straightforward to determine values of β and γ from Fano plots in which  is 

plotted versus . Werner et al. similarly determined IMFPs from EPES experiments for 24 

elemental solids (Ag, Al, Au, Be, Bi, C, Co, Cu, Fe, Ge, Mg, Mn, Mo, Ni, Ta, Te, Ti, Pb, Pd, 

Pt, Si, V, W, Zn) for energies between 50 eV and 3400 eV. Their IMFPs were averages of 

values obtained with respect to Ni, Cu, Ag, and Au reference samples or, in the case of these 

four solids, to use of the other three as reference materials. Werner et al. similarly obtained β 

and γ  values from Fano plots for energies above 200 eV.83,84   

We have compared our calculated IMFPs for those elemental solids that are common 

to the EPES measurements of Tanuma et al. (11 solids) and of Werner et al. (17 solids). In 

these comparisons, IMFPs were computed from Eq. (14) and the values of β and γ reported 

by each group. Figures 19-23 show examples of our comparisons for graphite, Si, Fe, Ag, and 

Au in the form of Fano plots. In each Figure, we show Fano plots with our calculated IMFPs 

(“optical” IMFPs), with IMFPs from the TPP-2M equation [Eqs. (7) and (13)], and with 

IMFPs from the Tanuma et al. and Werner et al. experiments. For graphite (Fig. 19), we see 

that the Fano plots with the optical IMFPs are systematically larger than those with IMFPs 

from other sources.10 The slope of the Fano plot for the IMFPs from the TPP-2M equation, 



  24/60	
 

however, is in good agreement with those for IMFPs from both EPES results. In Figs. 20 (for 

Si) and 21 (for Fe), the optical IMFPs are in good agreement with those from the TPP-2M 

equation and both EPES measurements although the slope of the Fano plot from the Werner 

et al. EPES data for Si differs slightly from the other plots and the slope of the Fano plot from 

the Tanuma et al. EPES data for Fe differs from the other plots. For Ag (Fig. 22) and Au (Fig. 

23), the optical IMFPs agree well with those from the TPP-2M equation and from the EPES 

experiments of Tanuma et al. There are small but systematic differences with some of the 

IMFPs from the Werner et al. experiments, with the slopes of the Fano plots for Ag and Au 

from the latter IMFPs being slightly larger (for Ag) or smaller (for Au) than found for the 

other IMFPs.  

Although there are some inconsistencies in the comparisons shown in Figs. 19-23 

(particularly for graphite), we conclude from the general overall agreement in the slopes of 

the Fano plots that the energy dependences of the EPES IMFPs is very similar to the energy 

dependences of the optical IMFPs. We note that the EPES IMFPs described here were 

obtained from comparative measurements in which elastic-backscattered intensities from the 

sample of interest were compared with similar intensities from a reference material (Ni for 

the Tanuma et al. experiments and generally Ni, Cu, Ag, and Au for the Werner et al. 

experiments). As a result, the ratios of intensities may have only a weak dependence on the 

primary-electron energy. Nevertheless, there is no evidence of significant differences in the 

Fano-plot slopes for Si in Fig. 20 or of changes in these slopes with electron energy that 

might arise from the dissimilar electronic properties of Si (a free-electron-like solid) and Ni 

(a transition metal). In principle, the dissimilar electronic properties could cause differences 

between the Fano-plot slopes for the EPES IMFPs and the optical IMFPs at low electron 
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energies (particularly close to 100 eV) due to different probabilities for surface-electronic 

excitations (discussed below) or to correlation and exchange corrections (discussed above). 

There is, however, a significant difference in the Fano-plot slopes for the optical IMFPs and 

the IMFPs from the EPES experiments for graphite in Fig. 19. We speculate that this 

difference might be associated with the highly anisotropic optical properties of graphite. Our 

ELF data was obtained from the electron energy-loss spectroscopy experiments of Venghaus85 

who reported the ELF for momentum transfers perpendicular to the graphite c-axis. The ELF 

for momentum transfers parallel to the c-axis has a different shape.36 The Penn algorithm was 

developed for isotropic solids, and it is likely that our optical IMFPs for graphite have much 

larger uncertainties than for the other elemental solids. We also note that the graphite samples 

used in the Tanuma et al. EPES experiments were not sputtered, and thus the resulting IMFPs 

could have some error arising from diffraction effects (there was some waviness in the 

original Fano plot for the graphite IMFPs47). Nevertheless, the graphite sample used by 

Werner et al. was sputtered and the slope of the resulting Fano plot was essentially identical 

to that reported by Tanuma et al., as shown in Fig. 19. 

We calculated RMS differences between our optical IMFPs and the IMFPs from the 

EPES results of Tanuma et al. and Werner et al. for the common solids in each comparison. 

IMFPs were computed for the same energies as our calculations between 100 eV and 5 000 

eV for the Tanuma et al. comparison and between 200 eV and 3 400 eV for the Werner et al. 

comparison. We also made similar comparisons between IMFPs from the TPP-2M equation 

and the IMFPs from the EPES measurements. The average RMS differences were 12 % (11 

elemental solids) for the comparison of the optical IMFPs with the Tanuma et al. IMFPs and 

11 % (13 elemental solids) for the comparison of the TPP-2M IMFPs and the Tanuma et al. 
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IMFPs. We similarly found average RMS differences of 15 % (17 elemental solids) for the 

comparison of optical IMFPs with the Werner et al. IMFPs and 19 % (17 elemental solids) 

for the comparison of the TPP-2M IMFPs and the Werner et al. IMFPs.  The relatively large 

RMS differences in the latter comparisons are associated with the relatively large 

uncertainties of the parameters β and γ reported by Werner et al.83,84 

Values of IMFPs from the Bethe equation [Eq. (14)] are mainly determined by the 

value of β which can be obtained from the slope of a Fano plot. We now compare β values 

obtained from Fano plots with IMFPs from the EPES measurements of Tanuma et al. and 

Werner et al., , to similar values obtained from analyses of our calculated IMFPs. We 

have already shown in Figs. 12 and 13 that the slopes of Fano plots, as evaluated from Eqs. 

(10), (11), and (12), are functions of energy. Values of , however, were determined as 

average slopes over moderately large energy ranges (100 eV to 5 keV for the Tanuma et al. 

IMFPs and 200 eV to 3.4 keV for the Werner et al. IMFPs). We have chosen to compare 

values of from each data source with values of  that were obtained from the slopes 

of Fano plots with our optical IMFPs using Eq. (12), 

 

  ,      (15) 

 

and with Eq. (15) evaluated at an energy of 1 keV and values of β, C, and D from Table 5. 

Figure 24 shows plots of  from each data source versus  for the elemental solids that 

are common to the EPES measurements and our calculations. We see that there is a generally 

satisfactory correlation between the  values from the Tanuma et al. EPES measurements 

(solid circles) and values of  (as represented by the dashed line . There is 
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also a reasonable correlation between the  values from the Werner et al. measurements 

(solid squares) and  although one data point (for Bi) appears to be an outlier.  

 Powell and Jablonski16 have discussed the following sources of uncertainty in 

IMFPs from EPES measurements: (a) validity of the theoretical model describing the elastic-

backscattering probability; (b) technique for measuring the elastic-peak intensity; (c) IMFP 

values for the reference material; (d) surface excitations; (e) surface roughness; (f) surface 

composition (e.g., presence of any surface contamination); (g) specimen crystallinity; and (h) 

stability of the primary-beam current. IMFPs from most EPES experiments are based on 

ratios of elastically-scattered intensities at a given energy for two materials, the sample of 

interest and a reference sample.1,16 The experimental ratios are compared with similar ratios 

obtained from Monte Carlo simulations. The latter ratios depend on the reliability of 

calculated differential elastic-scattering cross sections and other parameters. Although the 

cross sections may have significant uncertainties,86,87 the calculated intensity ratios should 

have much smaller uncertainties. 

The EPES IMFPs of Tanuma et al. and Werner et al. were based on relative 

measurements of elastically backscattered intensities for each sample to similar 

measurements for one or more reference solids for which the IMFPs were believed known. 

These reference solids (Ni, Cu, Ag, and Au) were those identified by Powell and Jablonski as 

materials with “recommended” values of IMFPs that were based, for each solid, on calculated 

IMFPs from two or more groups that showed a high degree of consistency with each other 

and with IMFPs from EPES experiments (also from two or more groups). More recently, 

Powell and Jablonski1 concluded that IMFPs calculated from optical data have uncertainties 

of up to about 10 %. We therefore believe that there is satisfactory consistency between our 
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optical IMFPs and the IMFPs from the experiments of Tanuma et al. and Werner et al. 

Finally, we mention briefly several further tests of IMFPs calculated from optical 

data. Seah et al.88 made an extensive comparison of measured AES and XPS peak intensities 

with corresponding calculated peak intensities for some 60 elemental solids. One parameter 

in these calculations was the IMFP, and Seah et al. chose to use IMFPs from the TPP-2M 

equation. They found good agreement between the measured and calculated intensities, with 

scatter factors of about 1.09 for AES and about 1.12 for XPS. For a careful analysis of 

thicknesses of thin films of SiO2 on Si determined by XPS and other techniques, Seah and 

Spencer89 determined the effective attenuation lengths (EALs) of Si 2p photoelectrons in SiO2. 

Their EALs, 2.996 nm and 3.485 nm for XPS with Mg Kα and Al Kα X-ray sources, 

respectively, agreed well with the corresponding calculated values of 2.76 nm and 3.21 nm.90 

The latter values are based on average IMFP values at each photoelectron energy for Si and 

SiO2 from previously reported IMFP calculations4,5 and a correction for the effects of elastic 

scattering.91  

Werner et al.27 recently analyzed reflection electron energy-loss spectra (REELS) of 

17 elemental metals to determine optical constants for photon energies between 0.5 eV and 

70.5 eV that, with atomic photoabsorption data for higher photon energies, were utilized to 

calculate IMFPs with Penn’s algorithm.18 For these 17 solids, the average RMS deviation of 

these IMFPs for energies between 99.5 eV and 9897.1 eV and our IMFPs in Table 4 was 

5.9 %. Werner et al. also commented that IMFPs from their REELS data were 

“indistinguishably similar” to those obtained from parallel calculations of optical constants 

using density-functional theory. Given the uncertainties of the optical data used in our IMFP 

calculations (Table 3) and the uncertainties in IMFP calculations from optical data 
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(~10 %),1,16 there is satisfactory consistency of our IMFPs with those obtained from other 

methods. 

 

SUMMARY 

We report new calculations of IMFPs for 41 elemental solids (Li, Be, graphite, 

diamond, glassy C, Na, Mg, Al, Si, K, Sc, Ti, V, Cr, Fe, Co, Ni, Cu, Ge, Y, Nb, Mo, Ru, Rh, 

Pd, Ag, In, Sn, Cs, Gd, Tb, Dy, Hf, Ta, W, Re, Os, Ir, Pt, Au, and Bi) for electron energies 

from 50 eV to 30 keV. The IMFPs were calculated from experimental optical data using the 

full Penn algorithm for energies up to 300 eV and the simpler single-pole approximation for 

higher energies. Improved sets of optical data over those used for our previous IMFP 

calculations3,4 were utilized for 21 of the solids (Mg, Ti, V, Cr, Fe, Ni, Cu, Y, Nb, Mo, Ru, Rh, 

Pd, Hf, Ta, W, Re, Os, Ir, Pt, and Au). 

Figure 25 is a summary plot of the calculated IMFPs for the 41 solids as a function of 

energy. IMFPs are shown for energies between 10 eV and 50 eV to indicate trends but these 

values are not as reliable as those at higher energies. For energies between 1 keV and 30 keV, 

there is at least a factor of five difference between the smallest and largest IMFPs. Such 

variations in IMFP magnitudes are due mainly to variations in bulk densities. Minima in the 

IMFP plots occur at energies between about 10 eV and about 100 eV. These variations are 

associated with differences in the shapes of the energy-loss functions for the solids.40 

The calculated IMFPs could be fitted to the modified Bethe equation for inelastic 

scattering of electrons in matter for energies from 50 eV to 30 keV. The average RMS 

deviation in these fits was 0.48 %. We also compared the calculated IMFPs with values from 

the predictive TPP-2M equation [Eqs. (7) and (13)] which was developed from our earlier 
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IMFP calculations for the 50 eV to 2 keV range. The average RMS deviation in this 

comparison for the 41 solids was 12.3 %; this average RMS deviation was almost the same as 

that found in a similar comparison for the 50 eV to 2 keV range (12.8 %). Large RMS 

deviations were found for diamond, graphite, and cesium (71.7 %, 47.9 %, and 36.7 %, 

respectively) as shown in Table 6; possible reasons for these large deviations were discussed 

in a previous paper.10 If the RMS deviations for diamond, graphite, and cesium are excluded, 

the average RMS deviation for the remaining 38 elements is 9.2 %.  This value is slightly 

superior to the corresponding average RMS deviation of 10.2 % found with IMFPs for the 50 

eV to 2 keV range for our original group of 27 elemental solids.7 The large deviations 

between the calculated IMFPs and those from the TPP-2M equation for diamond, graphite, 

and cesium were traced to the relatively small computed values of the parameter β in the 

TPP-2M equation [from Eq. (13(b))] (β ≈ 0.01 for diamond and graphite) and also for 

relatively large values of β (β ≈ 0.25 for Cs).10 Other solids may have similarly low values of 

β (as indicated by the values from the fits of Eq. (7) to the calculated IMFPs in Table 5) but, 

for their particular material parameters, there was less sensitivity of the IMFPs from TPP-2M 

than for diamond and graphite. We also note that the large deviation for graphite could be 

associated with the highly anisotropic optical properties of graphite; such anisotropies are 

neglected in the Penn algorithm. We therefore believe that the TPP-2M equation should be 

useful for estimating IMFPs in most materials for electron energies up to 30 keV in most 

materials with an average RMS uncertainty of about 10 %. Larger uncertainties may occur 

for energies less than 300 eV. 

We have compared our calculated IMFPs with those from other recent calculations 

and from experiments. Our results for Al and Cu agree well with those of Mao et al.48,49 who 
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also used the FPA. There is also generally good consistency between our results for Al and 

Au and those of Denton et al.38 who used Mermin functions to describe outer-electron 

excitations rather than the Lindhard function that was utilized in the Penn algorithm. 

Comparisons were also made with IMFPs determined by elastic-peak electron spectroscopy 

that were reported by Tanuma et al.47 for 11 elemental solids and by Werner et al.83,84 for 17 

elemental solids. Satisfactory agreement was found in most of these comparisons. The 

average RMS differences between the calculated IMFPs and the experimental IMFPs were 

12 % for the Tanuma et al. results and 15 % for the Werner et al. results.  
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Table 1. Values of material parameters used in the IMFP calculations and for the analysis of IMFP  
results for the indicated elemental solids. 
         

Element M      ρ Nv  Ep  Eg  EF          
  (g cm-3)   (eV)  (eV)	
   (eV)  
       

     
      

Li 6.941 0.534 1.0 7.99 0 4.74   
Be 9.01218 1.848 2.0 18.44 0 14.3   

C (graphite) 12.011 2.25 4.0 24.93 0 20.4   
C (diamond) 12.011 3.515 4.0 31.16 5.5 20.4   

C (glassy) 12.011 1.8 4.0 22.30 0 20.4   
Na 22.989768 0.971 1.0 5.92 0 3.24   
Mg 24.3050 1.738 2.0 10.89 0 7.1   
Al 26.98154 2.7 3.0 15.78 0 11.2   
Si 28.0855 2.33 4.0 16.59 1.1 12.5   
K 39.0983 0.862 1.0 4.28 0 2.12   
Sc 44.95591 2.989 3.0 12.86 0 5.8   
Ti 47.867 4.51 4.0 17.68 0 6.0   
V 50.942 6.11 5.0 22.30 0 6.4   
Cr 51.9961 7.14 6.0 26.14 0 7.8   
Fe 55.845 7.874 8.0 30.59 0 8.9   
Co 58.9332 8.90 9.0 33.58 0 10   
Ni 58.6934 8.902 10.0 35.47 0 9.1   
Cu 63.546 8.96 11.0 35.87 0 8.7   
Ge 72.59 5.32 4.0 15.59 0.67 12.6   
Y 88.906 4.469 3.0 11.18 0 4.4   

Nb 92.90638 8.57 5.0 19.56 0 5.3   
Mo 95.94 10.28 6.0 23.09 0 6.5   
Ru 101.07 12.41 8.0 28.54 0 6.9   
Rh 102.90550 12.41 9.0 30.00 0 6.9   
Pd 106.42 12.02 10.0 30.61 0 6.2   
Ag 107.8682 10.5 11.0 29.80 0 7.2   
In 114.818 7.31 3.0 12.59 0 4.82   
Sn 118.71 7.31 4.0 14.29 0 5.51   
Cs 132.90543 1.88 1.0 3.43 0 1.73   
Gd 157.25 8.23 9.0 19.77 0 3.5   
Tb 158.92534 8.25 9.0 19.69 0 4.0   
Dy 162.5 8.78 9.0 20.08 0 3.5   
Hf 178.49 13.31 4.0 15.73 0 7.9   
Ta 180.9479 16.65 5.0 19.53 0 8.4   
W 183.85 19.3 6.0 22.86 0 10.1   
Re 186.207 21.02 7.0 25.60 0 10.7   
Os 190.23 22.61 8.0 28.08 0 11.4   
Ir 192.217 22.65 9.0 29.66 0 11.2   
Pt 195.08 21.45 10.0 30.20 0 10.6   
Au 196.967 19.32 11.0 29.92 0 9.0   
Bi 208.98037 9.79 5.0 13.94 0 12.6   
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Table 2. Sources of optical data and energy-loss function measurements used in the IMFP calculations 

for 25 of the elemental solids considered here.	
 
Element Photon energy range 

(eV) 
Source of data 

Mg 1 – 600 Ref. 21 
 609.43 – 30 000 Ref. 22 

Si 0.005 – 2 000  Ref. 23 
 2 025.3 – 30 000 Ref. 22 

Ti 1 – 54 Ref. 27 
 56 – 88 Interpolation of ELF data with an  equation 

 91.623 – 30 000 Ref. 22 
V 0.1 – 24  Ref. 30 
 24.55 – 40 Ref. 26 

 41.143 – 30 000 Ref. 22 
Cr 0.04 – 29.52 Ref. 26 

Fe 

30 – 35 
36.003 – 30 000 

0.1 – 30 

Interpolation of ELF data with a quartic equation 
Ref. 22 
Ref. 26 

 
31 – 45 

41.778 – 30 000 
Interpolation of ELF data with a quartic equation 
Ref. 22 

Co 0.5 – 70.5 Ref. 27 
 72.059 – 30 000 Ref. 22  

Ni 0.1 – 2 000 Ref. 23  
 2 025.3 – 30 000 Ref. 22 

Cu 1 –  95 Ref. 21 
 101.94 – 30 000 Ref. 22 

Y 
 

0.1 – 39.5  
40.059 – 30 000 

Ref. 31 
Ref. 22 

Nb 
 

0.12 – 40.5 
 41.143 – 30 0000 

Ref. 26 
Ref. 22 

Mo 0.1 – 30  Ref. 23 
 31 – 39  Interpolation of ELF data with a cubic equation  
       40.059 – 30 000 Ref. 22 

Ru 0.1 – 40 Ref. 26 

 
41.3 – 50.6 

52.312 – 30 000 
Ref. 24 
Ref. 22 

Rh 0.1 – 40 
41.143 – 30 000 

Ref. 23 
Ref. 22 

Pd 0.1 – 17.26 Ref. 30 

 
18 – 120 

122.88 – 30 000 
Interpolation of ELF data with a cubic spline function 
Ref. 22 

Ag 1 – 30 000 Ref. 21 
Hf 0.52 – 24.8 Ref. 26 

 26 – 50 Interpolation of ELF data with a quintic equation 
 50.935– 30 000 Ref. 22 
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Ta  0.1 – 35 
36 – 46 

47.016 – 30 000 

Ref. 30 
Interpolation of ELF data with a quartic equation 
Ref. 22 

W 
 

0.05 –33.5 
34 – 39 

Ref. 23 
Interpolation of ELF data with a cubic spline function 

 40.059 – 30 000 Ref. 22 
Re 0.1 – 37  Ref. 26 

 
38 – 43 

243.389 – 30 000 
Interpolation of ELF data with a quartic equation 
Ref. 22 

Os 0.1 – 39 Ref. 23  

Ir 
40.059 – 30 000 

0.1 – 40  
Ref. 22  
Ref. 23 

 41.143 – 30 000 Ref. 22 
Pt 0.1 – 82.66 Ref. 23 
 84 – 98 Interpolation of ELF data with a cubic equation 

 
100 – 2 000 

2 025.3 – 30 000 
Ref. 28 
Ref. 22 

Au 0.1 - 9919 Ref. 23 
 10 044 - 30 000 Ref. 22 

Bi 0.6 - 30 000  Ref. 21 

	
 


