Article Spin and Valley States in Gate-Defined Bilayer Graphene Quantum Dots

Marius Eich ; František Herman ; Riccardo Pisoni ; Hiske Overweg ; Annika Kurzmann ; Yongjin Lee ; Peter Rickhaus ; Kenji Watanabe SAMURAI ORCID (National Institute for Materials Science) ; Takashi Taniguchi SAMURAI ORCID (National Institute for Materials Science) ; Manfred Sigrist ; Thomas Ihn ; Klaus Ensslin

Collection

Citation
Marius Eich, František Herman, Riccardo Pisoni, Hiske Overweg, Annika Kurzmann, Yongjin Lee, Peter Rickhaus, Kenji Watanabe, Takashi Taniguchi, Manfred Sigrist, Thomas Ihn, Klaus Ensslin. Spin and Valley States in Gate-Defined Bilayer Graphene Quantum Dots. Physical Review X. 2018, 8 (3), 031023.
SAMURAI

Description:

(abstract)

In bilayer graphene, electrostatic confinement can be realized by a suitable design of top and back gate electrodes. We measure electronic transport through a bilayer graphene quantum dot, which is laterally confined by gapped regions and connected to the leads via p-n junctions. Single electron and hole occupancy is realized and charge carriers n = 1, 2, . . . 50 can be filled successively into the quantum system with charging energies exceeding 10 meV. For the lowest quantum states we can clearly observe valley and Zeeman splittings with a spin g-factor of gs ≈ 2. In the low field-limit, the valley splitting depends linearly on the perpendicular magnetic field and is in qualitative agreement with calculations.

Rights:

Keyword: Bilayer graphene, quantum dot, electrostatic confinement

Date published: 2018-07-24

Publisher: American Physical Society (APS)

Journal:

  • Physical Review X (ISSN: 21603308) vol. 8 issue. 3 031023

Funding:

  • Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung
  • National Center of Competence in Research Quantum Science and Technology
  • Eidgenössische Technische Hochschule Zürich
  • Ministry of Education, Culture, Sports, Science and Technology
  • Japan Society for the Promotion of Science JP15K21722
  • European Graphene Flagship

Manuscript type: Publisher's version (Version of record)

MDR DOI:

First published URL: https://doi.org/10.1103/physrevx.8.031023

Related item:

Other identifier(s):

Contact agent:

Updated at: 2025-02-23 22:50:18 +0900

Published on MDR: 2025-02-23 22:50:18 +0900

Filename Size
Filename PhysRevX.8.031023.pdf (Thumbnail)
application/pdf
Size 4.82 MB Detail