Article Controlled interlayer exciton ionization in an electrostatic trap in atomically thin heterostructures

Andrew Y. Joe ORCID ; Andrés M. Mier Valdivia ; Luis A. Jauregui ORCID ; Kateryna Pistunova ORCID ; Dapeng Ding ; You Zhou ORCID ; Giovanni Scuri ORCID ; Kristiaan De Greve ; Andrey Sushko ; Bumho Kim ORCID ; Takashi Taniguchi SAMURAI ORCID ; Kenji Watanabe SAMURAI ORCID ; James C. Hone ORCID ; Mikhail D. Lukin ORCID ; Hongkun Park ORCID ; Philip Kim ORCID

Collection

Citation
Andrew Y. Joe, Andrés M. Mier Valdivia, Luis A. Jauregui, Kateryna Pistunova, Dapeng Ding, You Zhou, Giovanni Scuri, Kristiaan De Greve, Andrey Sushko, Bumho Kim, Takashi Taniguchi, Kenji Watanabe, James C. Hone, Mikhail D. Lukin, Hongkun Park, Philip Kim. Controlled interlayer exciton ionization in an electrostatic trap in atomically thin heterostructures. Nature Communications. 2024, 15 (1), 6743.

Description:

(abstract)

Atomically thin semiconductor heterostructures provide a two-dimensional (2D) device platform for creating high densities of cold, controllable excitons. Interlayer excitons (IEs), bound electrons and holes localized to separate 2D quantum well layers, have permanent out-of-plane dipole moments and long lifetimes, tailoring their spatial distribution on demand. Here, we employ electrostatic gates to trap IEs and control their density. By electrically modulating IE Stark-shift, an electron-hole pair concentration beyond 2×1012 cm-2 can be achieved. At this high IE density, we observe an exponentially increasing linewidth broadening indicative of an IE ionization transition, independent of the trap depth. This runaway threshold remains constant at low temperatures but increases above 20 K, consistent with the quantum dissociation of a degenerate IE gas. The deeper understanding of the IE ionization phase diagram coupled with the additional tunability via electrostatic trapping provide an important step towards creating dipolar exciton condensates in atomically thin, solid-state devices.

Rights:

Keyword: Semiconductor heterostructures, interlayer excitons, electrostatic gates

Date published: 2024-08-08

Publisher: Springer Science and Business Media LLC

Journal:

  • Nature Communications (ISSN: 20411723) vol. 15 issue. 1 6743

Funding:

  • United States Department of Defense | United States Navy | Office of Naval Research N00014-21-1-2377

Manuscript type: Publisher's version (Version of record)

MDR DOI:

First published URL: https://doi.org/10.1038/s41467-024-51128-9

Related item:

Other identifier(s):

Contact agent:

Updated at: 2025-02-05 12:31:21 +0900

Published on MDR: 2025-02-05 12:31:21 +0900

Filename Size
Filename s41467-024-51128-9.pdf (Thumbnail)
application/pdf
Size 2.37 MB Detail