Article Generation and control of nonlocal chiral currents in graphene superlattices by orbital Hall effect

Juan Salvador-Sánchez ; Luis M. Canonico ; Ana Pérez-Rodríguez ; Tarik P. Cysne ; Yuriko Baba ; Vito Clericò ; Marc Vila ; Daniel Vaquero ; Juan Antonio Delgado-Notario ; José M. Caridad ; Kenji Watanabe SAMURAI ORCID (National Institute for Materials ScienceROR) ; Takashi Taniguchi SAMURAI ORCID (National Institute for Materials ScienceROR) ; Rafael A. Molina ; Francisco Domínguez-Adame ; Stephan Roche ; Enrique Diez ; Tatiana G. Rappoport ; Mario Amado

PhysRevResearch.6.023212.pdf
Download all files
(2.45 MB)
Collection

Citation
Juan Salvador-Sánchez, Luis M. Canonico, Ana Pérez-Rodríguez, Tarik P. Cysne, Yuriko Baba, Vito Clericò, Marc Vila, Daniel Vaquero, Juan Antonio Delgado-Notario, José M. Caridad, Kenji Watanabe, Takashi Taniguchi, Rafael A. Molina, Francisco Domínguez-Adame, Stephan Roche, Enrique Diez, Tatiana G. Rappoport, Mario Amado. Generation and control of nonlocal chiral currents in graphene superlattices by orbital Hall effect. Physical Review Research. 2024, 6 (2), 023212.
SAMURAI

Description:

(abstract)

Graphene-based superlattices offer a new materials playground to exploit and control a higher number of electronic degrees of freedom, such as charge, spin, or valley in disruptive technologies. Recently, orbital effects, emerging in multivalley band structure lacking inversion symmetry, have been discussed as possible new phenomena for developing orbitronics. Here, we report non- local transport measurements in small gap hBN/graphene/hBN moiré superlattices which reveal very strong magnetic field-induced chiral response which is stable up to room temperature. The measured sign dependence of the non-local signal with respect to the magnetic field orientation clearly indicates strong interaction with orbital magnetic moments. Our analysis confirms that such emerging orbital effects can be manipulated by magnetic and electric fields which respectively lift the valley degeneracy and generate transverse flow of valley-dependent orbital magnetic moments. The interpretation of experimental data is well supported by numerical simulations, and the reported phenomenon is a formidable way of in-situ manipulation of the transverse flow of orbital information, that could enable developing (spin)-orbitronic devices.

Rights:

Keyword: Superlattices, orbitronics, nonlocal transport

Date published: 2024-05-28

Publisher: American Physical Society (APS)

Journal:

  • Physical Review Research (ISSN: 26431564) vol. 6 issue. 2 023212

Funding:

  • Ministerio de Ciencia e Innovación PID2019-106820RB-C21/22
  • Seventh Framework Programme 881603
  • Ministerio de Ciencia e Innovación PID2022-136285NB-C32
  • Ministerio de Ciencia e Innovación PID2022-136285NB-C31
  • Ministerio de Ciencia e Innovación RYC2019-028443-I
  • European Regional Development Fund SA121P20
  • European Regional Development Fund SA103P23
  • H2020 Marie Skłodowska-Curie Actions 101034371
  • Ministerio de Universidades FPU19/04224
  • Institut Català de Nanociència i Nanotecnologia
  • Ministerio de Economía y Competitividad SEV-2017-0706
  • Generalitat de Catalunya 2022.07471.CEECIND/CP1718/CT0001
  • Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
  • U.S. Department of Energy
  • Office of Science
  • Basic Energy Sciences
  • Japan Society for the Promotion of Science 19H05790
  • Japan Society for the Promotion of Science 20H00354
  • Japan Society for the Promotion of Science 21H05233
  • Universidad de Salamanca

Manuscript type: Publisher's version (Version of record)

MDR DOI:

First published URL: https://doi.org/10.1103/physrevresearch.6.023212

Related item:

Other identifier(s):

Contact agent:

Updated at: 2025-02-23 22:47:22 +0900

Published on MDR: 2025-02-23 22:47:22 +0900

Filename Size
Filename PhysRevResearch.6.023212.pdf (Thumbnail)
application/pdf
Size 2.45 MB Detail