Publication
Triacylglycerol-droplet-induced bilayer spontaneous curvature in giant unilamellar vesicles
This study investigated the incorporation of triacylglycerol droplets in the bilayers of giant unilamellar vesicles (GUVs) using four triacylglycerols and four phosphatidylcholines by confocal laser scanning microscopy. The triacylglycerol droplets were incorporated between the monolayer leaflets of the GUVs. Among the spherical droplets protruding on only one side of the bilayers, the droplets bound to the outer leaflets outnumbered those bound to the inner leaflets. The more frequent droplet binding to the outer leaflet caused transbilayer asymmetry in the droplet surface density. A vesicle consisting of a single-bilayer spherical segment and a double-bilayer spherical segment was also observed. The yield of these vesicles was comparable to or higher than that of the droplet-incorporating GUVs for many of the phosphatidylcholine–triacylglycerol combinations. In a vesicle consisting of single-bilayer and double-bilayer segments, most of the triacylglycerol droplets were localized on the outermost membrane surface along the segment boundary and in the double-bilayer segment. To rationalize the formation of these vesicle structures, we propose that the transbilayer asymmetry in the droplet surface density induces spontaneous curvature of the bilayer, with the bilayer spontaneously bending away from the droplets. Energy calculations performed assuming the existence of spontaneous curvature of the bilayer corroborated the experimentally determined membrane shapes for the vesicles consisting of unilamellar and bilamellar regions.
- First published at
- Creator
- Keyword
- Resource type
- Publisher
- Date published
- 31/05/2024
- Rights statement
- License description
- Journal
- Manuscript type
- Version of record (Published version)
- Language
- Funding reference